IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v367y2006icp173-180.html
   My bibliography  Save this article

Expected transient time and damage spreading for the NER automaton on geometrically connected graphs

Author

Listed:
  • Hernandez, Gonzalo
  • Salinas, Luis

Abstract

The extremal rules automata (ER) were introduced as a generalization of an earlier method for elementary image enhancement: the nearest extremum rule automaton (NER). The ER dynamical behavior was characterized for the sequential iteration by a Lyapunov functional which allows proving fixed point steady state behavior together with an exponential bound for the maximal transient time. For the parallel iteration the fixed point steady state behavior were determined by direct proof, but the maximal transient time has not been yet characterized. In this work a numerical study is performed to determine the expected transient time and damage spreading of the NER parallel iteration on geometrically connected graphs. The results can be interpreted as a generalization of [Hernandez, Herrmann, Goles, Extremal automata for image sharpening, Int. J. Modern Phys. C 5(6) (1994) 923–932] for non regular graphs.

Suggested Citation

  • Hernandez, Gonzalo & Salinas, Luis, 2006. "Expected transient time and damage spreading for the NER automaton on geometrically connected graphs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 367(C), pages 173-180.
  • Handle: RePEc:eee:phsmap:v:367:y:2006:i:c:p:173-180
    DOI: 10.1016/j.physa.2005.12.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037843710501246X
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2005.12.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:367:y:2006:i:c:p:173-180. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.