IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v367y2006icp158-172.html
   My bibliography  Save this article

Conversion of local transient chaos into global laminar states in coupled map lattices with long-range interactions

Author

Listed:
  • Vasconcelos, D.B.
  • Viana, R.L.
  • Lopes, S.R.
  • Pinto, S.E. de S.

Abstract

Spatially extended dynamical systems may exhibit intermittent behavior in both spatial and temporal scales, characterized by repeated conversions from spatially localized transient chaos into global laminar patterns. A simple model, yet retaining some features of more complex systems, consists of a lattice of a class of tent maps with an escaping region. The coupling prescription we adopt in this work considers the interaction of a site with all its neighbors, the corresponding strength decaying with the lattice distance as a power-law. This makes possible to pass continuously from a local (nearest-neighbor) to a global kind of coupling. We investigate statistical properties of both the chaotic transient bursts and the periodic laminar states, with respect to the coupling parameters.

Suggested Citation

  • Vasconcelos, D.B. & Viana, R.L. & Lopes, S.R. & Pinto, S.E. de S., 2006. "Conversion of local transient chaos into global laminar states in coupled map lattices with long-range interactions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 367(C), pages 158-172.
  • Handle: RePEc:eee:phsmap:v:367:y:2006:i:c:p:158-172
    DOI: 10.1016/j.physa.2005.11.042
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437105012690
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2005.11.042?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Ying-Qian & He, Yi & Wang, Xing-Yuan, 2018. "Spatiotemporal chaos in mixed linear–nonlinear two-dimensional coupled logistic map lattice," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 148-160.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:367:y:2006:i:c:p:158-172. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.