IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v366y2006icp472-484.html
   My bibliography  Save this article

Bonabeau hierarchy models revisited

Author

Listed:
  • Lacasa, Lucas
  • Luque, Bartolo

Abstract

What basic processes generate hierarchy in a collective? The Bonabeau model provides us a simple mechanism based on randomness which develops self-organization through both winner/looser effects and relaxation process. A phase transition between egalitarian and hierarchic states has been found both analytically and numerically in previous works. In this paper we present a different approach: by means of a discrete scheme we develop a mean field approximation that not only reproduces the phase transition but also allows us to characterize the complexity of hierarchic phase. In the same philosophy, we study a new version of the Bonabeau model, developed by Stauffer et al. Several previous works described numerically the presence of a similar phase transition in this later version. We find surprising results in this model that can be interpreted properly as the non-existence of phase transition in this version of Bonabeau model, but a changing in fixed point structure.

Suggested Citation

  • Lacasa, Lucas & Luque, Bartolo, 2006. "Bonabeau hierarchy models revisited," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 366(C), pages 472-484.
  • Handle: RePEc:eee:phsmap:v:366:y:2006:i:c:p:472-484
    DOI: 10.1016/j.physa.2005.10.046
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437105011179
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2005.10.046?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Karataieva, Tatiana & Koshmanenko, Volodymyr & Krawczyk, Małgorzata J. & Kułakowski, Krzysztof, 2019. "Mean field model of a game for power," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 535-547.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:366:y:2006:i:c:p:472-484. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.