IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v365y2006i2p360-382.html
   My bibliography  Save this article

Noise and conditional entropy evolution

Author

Listed:
  • Mackey, Michael C.
  • Tyran-Kamińska, Marta

Abstract

We study the convergence properties of the conditional (Kullback–Leibler) entropy in stochastic systems. We have proved general results showing that asymptotic stability is a necessary and sufficient condition for the monotone convergence of the conditional entropy to its maximal value of zero. Additionally we have made specific calculations of the rate of convergence of this entropy to zero in a one-dimensional situation, illustrated by Ornstein–Uhlenbeck and Rayleigh processes, higher dimensional situations, and a two-dimensional Ornstein–Uhlenbeck process with a stochastically perturbed harmonic oscillator and colored noise as examples. We also apply our general results to the problem of conditional entropy convergence in the presence of dichotomous noise. In both the one-dimensional and multidimensional cases we show that the convergence of the conditional entropy to zero is monotone and at least exponential. In the specific cases of the Ornstein–Uhlenbeck and Rayleigh processes, as well as the stochastically perturbed harmonic oscillator and colored noise examples, we obtain exact formulae for the temporal evolution of the conditional entropy starting from a concrete initial distribution. The rather surprising result in this case is that the rate of convergence of the entropy to zero is independent of the noise amplitude.

Suggested Citation

  • Mackey, Michael C. & Tyran-Kamińska, Marta, 2006. "Noise and conditional entropy evolution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 365(2), pages 360-382.
  • Handle: RePEc:eee:phsmap:v:365:y:2006:i:2:p:360-382
    DOI: 10.1016/j.physa.2005.10.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437105010447
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2005.10.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:365:y:2006:i:2:p:360-382. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.