IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v364y2006icp544-556.html
   My bibliography  Save this article

Collective chaos induced by structures of complex networks

Author

Listed:
  • Yang, Huijie
  • Zhao, Fangcui
  • Wang, Binghong

Abstract

Mapping a complex network of N coupled identical oscillators to a quantum system, the nearest neighbor level spacing (NNLS) distribution is used to identify collective chaos in the corresponding classical dynamics on the complex network. The classical dynamics on an Erdos–Renyi network with the wiring probability pER⩽1/N is in the state of collective order, while that on an Erdos–Renyi network with pER>1/N in the state of collective chaos. The dynamics on a WS Small-world complex network evolves from collective order to collective chaos rapidly in the region of the rewiring probability pr∈[0.0,0.1], and then keeps chaotic up to pr=1.0. The dynamics on a Growing Random Network (GRN) is in a special state deviates from order significantly in a way opposite to that on WS small-world networks. Each network can be measured by a couple values of two parameters (β,η).

Suggested Citation

  • Yang, Huijie & Zhao, Fangcui & Wang, Binghong, 2006. "Collective chaos induced by structures of complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 364(C), pages 544-556.
  • Handle: RePEc:eee:phsmap:v:364:y:2006:i:c:p:544-556
    DOI: 10.1016/j.physa.2005.09.050
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437105010174
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2005.09.050?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuan, Wu-Jie & Luo, Xiao-Shu & Jiang, Pin-Qun & Wang, Bing-Hong & Fang, Jin-Qing, 2008. "Transition to chaos in small-world dynamical network," Chaos, Solitons & Fractals, Elsevier, vol. 37(3), pages 799-806.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:364:y:2006:i:c:p:544-556. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.