IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v364y2006icp231-262.html
   My bibliography  Save this article

Transfer matrices for the partition function of the Potts model on lattice strips with toroidal and Klein-bottle boundary conditions

Author

Listed:
  • Chang, Shu-Chiuan
  • Shrock, Robert

Abstract

We present a method for calculating transfer matrices for the q-state Potts model partition functions Z(G,q,v), for arbitrary q and temperature variable v, on strip graphs G of the square (sq), triangular (tri), and honeycomb (hc) lattices of width Ly vertices and of arbitrarily great length Lx vertices, subject to toroidal and Klein-bottle boundary conditions. For the toroidal case we express the partition function as Z(Λ,Ly×Lx,q,v)=∑d=0Ly∑jbj(d)(λZ,Λ,Ly,d,j)m, where Λ denotes lattice type, bj(d) are specified polynomials of degree d in q, λZ,Λ,Ly,d,j are eigenvalues of the transfer matrix TZ,Λ,Ly,d in the degree-d subspace, and m=Lx (Lx/2) for Λ=sq,tri(hc), respectively. An analogous formula is given for Klein-bottle strips. We exhibit a method for calculating TZ,Λ,Ly,d for arbitrary Ly. In particular, we find some very simple formulas for the determinant det(TZ,Λ,Ly,d), and trace Tr(TZ,Λ,Ly). Illustrative examples of our general results are given, including new calculations of transfer matrices for Potts model partition functions on strips of the square, triangular, and honeycomb lattices with toroidal or Klein-bottle boundary conditions.

Suggested Citation

  • Chang, Shu-Chiuan & Shrock, Robert, 2006. "Transfer matrices for the partition function of the Potts model on lattice strips with toroidal and Klein-bottle boundary conditions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 364(C), pages 231-262.
  • Handle: RePEc:eee:phsmap:v:364:y:2006:i:c:p:231-262
    DOI: 10.1016/j.physa.2005.08.076
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437105009982
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2005.08.076?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:364:y:2006:i:c:p:231-262. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.