IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v361y2006i2p707-723.html
   My bibliography  Save this article

Optimized network structure and routing metric in wireless multihop ad hoc communication

Author

Listed:
  • Krause, Wolfram
  • Scholz, Jan
  • Greiner, Martin

Abstract

Inspired by the Statistical Physics of complex networks, wireless multihop ad hoc communication networks are considered in abstracted form. Since such engineered networks are able to modify their structure via topology control, we search for optimized network structures, which maximize the end-to-end throughput performance. A modified version of betweenness centrality is introduced and shown to be very relevant for the respective modeling. The calculated optimized network structures lead to a significant increase of the end-to-end throughput. The discussion of the resulting structural properties reveals that it will be almost impossible to construct these optimized topologies in a technologically efficient distributive manner. However, the modified betweenness centrality also allows to propose a new routing metric for the end-to-end communication traffic. This approach leads to an even larger increase of throughput capacity and is easily implementable in a technologically relevant manner.

Suggested Citation

  • Krause, Wolfram & Scholz, Jan & Greiner, Martin, 2006. "Optimized network structure and routing metric in wireless multihop ad hoc communication," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 361(2), pages 707-723.
  • Handle: RePEc:eee:phsmap:v:361:y:2006:i:2:p:707-723
    DOI: 10.1016/j.physa.2005.06.085
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437105007223
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2005.06.085?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Krause, Wolfram & Glauche, Ingmar & Sollacher, Rudolf & Greiner, Martin, 2004. "Impact of network structure on the capacity of wireless multihop ad hoc communication," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 338(3), pages 633-658.
    2. Dorogovtsev, S.N. & Mendes, J.F.F., 2003. "Evolution of Networks: From Biological Nets to the Internet and WWW," OUP Catalogue, Oxford University Press, number 9780198515906.
    3. Glauche, Ingmar & Krause, Wolfram & Sollacher, Rudolf & Greiner, Martin, 2004. "Distributive routing and congestion control in wireless multihop ad hoc communication networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 341(C), pages 677-701.
    4. Glauche, Ingmar & Krause, Wolfram & Sollacher, Rudolf & Greiner, Martin, 2003. "Continuum percolation of wireless ad hoc communication networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 325(3), pages 577-600.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Scholz, Jan & Krause, Wolfram & Greiner, Martin, 2008. "Decorrelation of networked communication flow via load-dependent routing weights," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(12), pages 2987-3000.
    2. Schönhof, Martin & Kesting, Arne & Treiber, Martin & Helbing, Dirk, 2006. "Coupled vehicle and information flows: Message transport on a dynamic vehicle network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 363(1), pages 73-81.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schönhof, Martin & Kesting, Arne & Treiber, Martin & Helbing, Dirk, 2006. "Coupled vehicle and information flows: Message transport on a dynamic vehicle network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 363(1), pages 73-81.
    2. Glauche, Ingmar & Krause, Wolfram & Sollacher, Rudolf & Greiner, Martin, 2004. "Distributive routing and congestion control in wireless multihop ad hoc communication networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 341(C), pages 677-701.
    3. Scholz, Jan & Dejori, Mathäus & Stetter, Martin & Greiner, Martin, 2005. "Noisy scale-free networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 350(2), pages 622-642.
    4. Ya-Chun Gao & Zong-Wen Wei & Bing-Hong Wang, 2013. "Dynamic Evolution Of Financial Network And Its Relation To Economic Crises," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 24(02), pages 1-10.
    5. Zhou, Wei-Xing & Jiang, Zhi-Qiang & Sornette, Didier, 2007. "Exploring self-similarity of complex cellular networks: The edge-covering method with simulated annealing and log-periodic sampling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 375(2), pages 741-752.
    6. Bezsudnov, I.V. & Snarskii, A.A., 2014. "From the time series to the complex networks: The parametric natural visibility graph," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 414(C), pages 53-60.
    7. Mark S. Handcock & Adrian E. Raftery & Jeremy M. Tantrum, 2007. "Model‐based clustering for social networks," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 170(2), pages 301-354, March.
    8. Wang, Qingyun & Duan, Zhisheng & Chen, Guanrong & Feng, Zhaosheng, 2008. "Synchronization in a class of weighted complex networks with coupling delays," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(22), pages 5616-5622.
    9. F. W. S. Lima, 2015. "Evolution of egoism on semi-directed and undirected Barabási-Albert networks," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 26(12), pages 1-9.
    10. G. Ghoshal & M. E.J. Newman, 2007. "Growing distributed networks with arbitrary degree distributions," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 58(2), pages 175-184, July.
    11. Chang, Y.F. & Han, S.K. & Wang, X.D., 2018. "The way to uncover community structure with core and diversity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 501(C), pages 111-119.
    12. Chakrabarti, Anindya S., 2015. "Stochastic Lotka-Volterra equations: A model of lagged diffusion of technology in an interconnected world," IIMA Working Papers WP2015-08-05, Indian Institute of Management Ahmedabad, Research and Publication Department.
    13. Roth, Camille, 2007. "Empiricism for descriptive social network models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 378(1), pages 53-58.
    14. Douglas R. White & Jason Owen-Smith & James Moody & Walter W. Powell, 2004. "Networks, Fields and Organizations: Micro-Dynamics, Scale and Cohesive Embeddings," Computational and Mathematical Organization Theory, Springer, vol. 10(1), pages 95-117, May.
    15. L. da F. Costa & L. E.C. da Rocha, 2006. "A generalized approach to complex networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 50(1), pages 237-242, March.
    16. Perc, Matjaž, 2010. "Zipf’s law and log-normal distributions in measures of scientific output across fields and institutions: 40 years of Slovenia’s research as an example," Journal of Informetrics, Elsevier, vol. 4(3), pages 358-364.
    17. Florian Blöchl & Fabian J. Theis & Fernando Vega-Redondo & Eric O'N. Fisher, 2010. "Which Sectors of a Modern Economy are most Central?," CESifo Working Paper Series 3175, CESifo.
    18. M. C. González & A. O. Sousa & H. J. Herrmann, 2004. "Opinion Formation On A Deterministic Pseudo-Fractal Network," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 15(01), pages 45-57.
    19. A. Chatterjee, 2009. "Kinetic models for wealth exchange on directed networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 67(4), pages 593-598, February.
    20. Z.-Q. Jiang & L. Guo & W.-X. Zhou, 2007. "Endogenous and exogenous dynamics in the fluctuations of capital fluxes," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 57(3), pages 347-355, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:361:y:2006:i:2:p:707-723. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.