IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v361y2006i2p441-456.html
   My bibliography  Save this article

Distribution of local void ratio in porous media systems from 3D X-ray microtomography images

Author

Listed:
  • Al-Raoush, Riyadh
  • Alshibli, Khalid A.

Abstract

We present in this paper a methodology to calculate the distribution of local void ratio in porous media systems from high-resolution three-dimensional images. We introduce an algorithm to calculate the distribution of local void ratio from 3D images based on distance and watershed transforms. The watershed transform is used to segment touched or overlapped particles in an efficient way and the distance transform is used to calculate the boundaries of local void regions. The algorithm is validated using computer simulated 3D images of regular packing, irregular (non-spherical particles) packing, and random uniform spherical packing. Results show that the algorithm is robust, accurate and can be used to calculate local void ratio distribution of 3D systems regardless of irregularity in shapes, sizes, or arrangement of particles. X-ray microtomography images of different glass bead systems are used to calculate distributions of local void ratio. Parameters of distributions are function of porosity and particle-size distribution. The maximum local void ratio in each system is less than 3.0 and the minimum is greater than 0.2.

Suggested Citation

  • Al-Raoush, Riyadh & Alshibli, Khalid A., 2006. "Distribution of local void ratio in porous media systems from 3D X-ray microtomography images," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 361(2), pages 441-456.
  • Handle: RePEc:eee:phsmap:v:361:y:2006:i:2:p:441-456
    DOI: 10.1016/j.physa.2005.05.043
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437105004905
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2005.05.043?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:361:y:2006:i:2:p:441-456. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.