IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v361y2006i2p394-404.html
   My bibliography  Save this article

The modified extended tanh-function method for solving Burgers-type equations

Author

Listed:
  • Soliman, A.A.

Abstract

By means of the modified extended tanh-function (METF) method the multiple travelling wave solutions of some different kinds of nonlinear partial differential equations are presented and implemented in a computer algebraic system. Solutions for the nonlinear equations such as one-dimensional Burgers, KDV–Burgers, coupled Burgers and two-dimensional Burgers’ equations are obtained precisely and so the efficiency of the method can be demonstrated.

Suggested Citation

  • Soliman, A.A., 2006. "The modified extended tanh-function method for solving Burgers-type equations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 361(2), pages 394-404.
  • Handle: RePEc:eee:phsmap:v:361:y:2006:i:2:p:394-404
    DOI: 10.1016/j.physa.2005.07.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437105007466
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2005.07.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abourabia, A.M. & El-Danaf, T.S. & Morad, A.M., 2009. "Exact solutions of the hierarchical Korteweg–de Vries equation of microstructured granular materials," Chaos, Solitons & Fractals, Elsevier, vol. 41(2), pages 716-726.
    2. Lai, Huilin & Ma, Changfeng, 2014. "A new lattice Boltzmann model for solving the coupled viscous Burgers’ equation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 395(C), pages 445-457.
    3. Başhan, Ali, 2020. "A numerical treatment of the coupled viscous Burgers’ equation in the presence of very large Reynolds number," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    4. Park, Sangbeom & Kim, Philsu & Jeon, Yonghyeon & Bak, Soyoon, 2022. "An economical robust algorithm for solving 1D coupled Burgers’ equations in a semi-Lagrangian framework," Applied Mathematics and Computation, Elsevier, vol. 428(C).
    5. Li, Qianhuan & Chai, Zhenhua & Shi, Baochang, 2015. "A novel lattice Boltzmann model for the coupled viscous Burgers’ equations," Applied Mathematics and Computation, Elsevier, vol. 250(C), pages 948-957.
    6. Hassani, Hossein & Naraghirad, Eskandar, 2019. "A new computational method based on optimization scheme for solving variable-order time fractional Burgers’ equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 162(C), pages 1-17.
    7. Mohanty, R.K. & Dai, Weizhong & Han, Fei, 2015. "Compact operator method of accuracy two in time and four in space for the numerical solution of coupled viscous Burgers’ equations," Applied Mathematics and Computation, Elsevier, vol. 256(C), pages 381-393.
    8. Piao, Xiangfan & Kim, Philsu, 2021. "Comment on: “The modified extended tanh-function method for solving Burgers-type equations” [Physica A 361 (2006) 394–404]," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 569(C).
    9. Goswami, Amit & Singh, Jagdev & Kumar, Devendra & Sushila,, 2019. "An efficient analytical approach for fractional equal width equations describing hydro-magnetic waves in cold plasma," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 563-575.
    10. Attaullah & Muhammad Shakeel & Nehad Ali Shah & Jae Dong Chung, 2022. "Modified Exp-Function Method to Find Exact Solutions of Ionic Currents along Microtubules," Mathematics, MDPI, vol. 10(6), pages 1-10, March.
    11. Soliman, A.A., 2009. "Exact solutions of KdV–Burgers’ equation by Exp-function method," Chaos, Solitons & Fractals, Elsevier, vol. 41(2), pages 1034-1039.
    12. Kavitha, L. & Prabhu, A. & Gopi, D., 2009. "New exact shape changing solitary solutions of a generalized Hirota equation with nonlinear inhomogeneities," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2322-2329.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:361:y:2006:i:2:p:394-404. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.