Author
Abstract
From the microscopic theory, we derive a number conserving quantum kinetic equation, for a dilute Bose gas valid at any temperature, in which the binary collisions between the quasi-particles are mediated by the Bogoliubov collective excitations. This different approach starts from the many-body Hamiltonian of a Boson gas and uses, in an appropriate way, the generalized random phase approximation. As a result, the collision term of the kinetic equation contains higher order contributions in the expansion in the interaction parameter. The major interest of this particular mechanism is that, in a regime where the condensate is stable, the collision process between condensed and noncondensed particles is totally blocked due to a total annihilation of the mutual interaction potential induced by the condensate itself. As a consequence, the condensate is not constrained to relax and can be superfluid. Furthermore, a Boltzmann-like H-theorem for the entropy exists for this equation and allows to distinguish between dissipative and nondissipative phenomena (like vortices). We also illustrate the analogy between this approach and the kinetic theory for a plasma, in which the collective excitations correspond precisely to a plasmon. The spectrum of these excitations and their damping are exactly the ones obtained from the gapless and conserving equilibrium dielectric formalism developed in Fliesser et al. [Phys. Rev. A 64 (2001) 013609]. Finally, we recover the Bogoliubov results for the ground state energy and the particle momentum distribution. This work contains more details of the summary presented in Navez [J. Low Temp. Phys., 138 (2005) 705–710].
Suggested Citation
Navez, Patrick, 2005.
"Collisionless dynamics of the condensate predicted in the random phase approximation,"
Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 356(2), pages 241-278.
Handle:
RePEc:eee:phsmap:v:356:y:2005:i:2:p:241-278
DOI: 10.1016/j.physa.2005.03.032
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:356:y:2005:i:2:p:241-278. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.