IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v352y2005i1p113-130.html
   My bibliography  Save this article

A cell-centered approach to developmental biology

Author

Listed:
  • Merks, Roeland M.H.
  • Glazier, James A.

Abstract

Explaining embryonic development of multicellular organisms requires insight into complex interactions between genetic regulation and physical, generic mechanisms at multiple scales. As more physicists move into developmental biology, we need to be aware of the “cultural” differences between the two fields, whose concepts of “explanations” and “models” traditionally differ: biologists aiming to identify genetic pathways and expression patterns, physicists tending to look for generic underlying principles.

Suggested Citation

  • Merks, Roeland M.H. & Glazier, James A., 2005. "A cell-centered approach to developmental biology," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 352(1), pages 113-130.
  • Handle: RePEc:eee:phsmap:v:352:y:2005:i:1:p:113-130
    DOI: 10.1016/j.physa.2004.12.028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437104016188
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2004.12.028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. John Wambaugh & Imran Shah, 2010. "Simulating Microdosimetry in a Virtual Hepatic Lobule," PLOS Computational Biology, Public Library of Science, vol. 6(4), pages 1-16, April.
    2. Yan, Kexun & Wang, Maoxiang & Hu, Fenglan & Xu, Meng, 2023. "Effect of cellular dedifferentiation on the growth of cell lineages," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 632(P1).
    3. Levada Alexandre L., 2016. "Information geometry, simulation and complexity in Gaussian random fields," Monte Carlo Methods and Applications, De Gruyter, vol. 22(2), pages 81-107, June.
    4. Anja Voss-Böhme, 2012. "Multi-Scale Modeling in Morphogenesis: A Critical Analysis of the Cellular Potts Model," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-14, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:352:y:2005:i:1:p:113-130. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.