IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v350y2005i2p451-465.html
   My bibliography  Save this article

Self-organized criticality and stock market dynamics: an empirical study

Author

Listed:
  • Bartolozzi, M.
  • Leinweber, D.B.
  • Thomas, A.W.

Abstract

The stock market is a complex self-interacting system, characterized by intermittent behaviour. Periods of high activity alternate with periods of relative calm. In the present work we investigate empirically the possibility that the market is in a self-organized critical state (SOC). A wavelet transform method is used in order to separate high activity periods, related to the avalanches found in sandpile models, from quiescent. A statistical analysis of the filtered data shows a power law behaviour in the avalanche size, duration and laminar times. The memory process, implied by the power law distribution of the laminar times, is not consistent with classical conservative models for self-organized criticality. We argue that a “near-SOC” state or a time dependence in the driver, which may be chaotic, can explain this behaviour.

Suggested Citation

  • Bartolozzi, M. & Leinweber, D.B. & Thomas, A.W., 2005. "Self-organized criticality and stock market dynamics: an empirical study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 350(2), pages 451-465.
  • Handle: RePEc:eee:phsmap:v:350:y:2005:i:2:p:451-465
    DOI: 10.1016/j.physa.2004.11.061
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437104014888
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2004.11.061?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Boon Kin Teh & Siew Ann Cheong, 2016. "The Asian Correction Can Be Quantitatively Forecasted Using a Statistical Model of Fusion-Fission Processes," PLOS ONE, Public Library of Science, vol. 11(10), pages 1-13, October.
    2. Bartolozzi, M. & Leinweber, D.B. & Thomas, A.W., 2006. "Symbiosis in the Bak–Sneppen model for biological evolution with economic applications," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 365(2), pages 499-508.
    3. Alessio Emanuele Biondo & Alessandro Pluchino & Andrea Rapisarda, 2017. "Informative Contagion Dynamics in a Multilayer Network Model of Financial Markets," Italian Economic Journal: A Continuation of Rivista Italiana degli Economisti and Giornale degli Economisti, Springer;Società Italiana degli Economisti (Italian Economic Association), vol. 3(3), pages 343-366, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:350:y:2005:i:2:p:451-465. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.