IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v346y2005i3p631-650.html
   My bibliography  Save this article

Effects of back step and update rule on congestion of mobile objects

Author

Listed:
  • Maniccam, S.

Abstract

This paper studies the effects of back step movement and update rule on the traffic congestion properties of mobile objects, using computer simulation. The mobile objects are modeled as four-way-biased random walkers in two-dimensional square lattice. It is found that there is always a phase transition from free flow to jammed state at some critical density with and without back step under sequential and parallel update for large systems. Back step does not reduce congestion as one might expect. In fact, back step makes congestion worse in terms of critical density. The critical density with back step is smaller than the critical density without back step under sequential and parallel update for large systems. Back step under parallel update leads to completely jammed state, whereas back step under sequential update leads to partially jammed state. The critical density under parallel update is smaller than the critical density under sequential update with and without back step. Variable drift has no significant effects on the congestion properties.

Suggested Citation

  • Maniccam, S., 2005. "Effects of back step and update rule on congestion of mobile objects," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 346(3), pages 631-650.
  • Handle: RePEc:eee:phsmap:v:346:y:2005:i:3:p:631-650
    DOI: 10.1016/j.physa.2004.08.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437104010787
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2004.08.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Rong & Zhao, Xuan & Zhou, Chenyu & Kong, Lingchen & Liu, Chengqing & Yu, Qiang, 2022. "Static floor field construction and fine discrete cellular automaton model: Algorithms, simulations and insights," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    2. Fang, Zhiming & Song, Weiguo & Zhang, Jun & Wu, Hao, 2010. "Experiment and modeling of exit-selecting behaviors during a building evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(4), pages 815-824.
    3. Liu, Yixue & Mao, Zhanli, 2022. "An experimental study on the critical state of herd behavior in decision-making of the crowd evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 595(C).
    4. Yue, Hao & Hao, Herui & Chen, Xiaoming & Shao, Chunfu, 2007. "Simulation of pedestrian flow on square lattice based on cellular automata model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 384(2), pages 567-588.
    5. Lili Lu & Gang Ren & Wei Wang & Chen Yu & Chenzi Ding, 2013. "Exploring the Effects of Different Walking Strategies on Bi-Directional Pedestrian Flow," Discrete Dynamics in Nature and Society, Hindawi, vol. 2013, pages 1-9, November.
    6. Fu, Libi & Song, Weiguo & Lv, Wei & Lo, Siuming, 2014. "Simulation of emotional contagion using modified SIR model: A cellular automaton approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 405(C), pages 380-391.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:346:y:2005:i:3:p:631-650. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.