IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v341y2004icp262-272.html
   My bibliography  Save this article

The three-state layered neural network with finite dilution

Author

Listed:
  • Theumann, W.K
  • Erichsen, R

Abstract

The dynamics and the stationary states of an exactly solvable three-state layered feed-forward neural network model with asymmetric synaptic connections, finite dilution and low pattern activity are studied in extension of a recent work on a recurrent network. Detailed phase diagrams are obtained for the stationary states and for the time evolution of the retrieval overlap with a single pattern. It is shown that in spite of instabilities for low thresholds there is a gradual improvement in network performance with increasing threshold up to an optimal stage. The robustness to synaptic noise is checked and the effects of dilution and of variable threshold on the information content of the network are also established.

Suggested Citation

  • Theumann, W.K & Erichsen, R, 2004. "The three-state layered neural network with finite dilution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 341(C), pages 262-272.
  • Handle: RePEc:eee:phsmap:v:341:y:2004:i:c:p:262-272
    DOI: 10.1016/j.physa.2004.04.130
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437104005436
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2004.04.130?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:341:y:2004:i:c:p:262-272. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.