IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v341y2004icp215-233.html
   My bibliography  Save this article

Is galaxy distribution non-extensive and non-Gaussian?

Author

Listed:
  • Nakamichi, Akika
  • Morikawa, Masahiro

Abstract

Self-gravitating systems in the Universe are generally thought to be non-extensive, and often show long-tails in various distribution functions. In principle, these non-Boltzmann properties are naturally expected from the peculiar property of gravity, long-range and unshielded. Therefore, the ordinary Boltzmann statistical mechanics would not be applicable for these self-gravitating systems in its naive form. In order to step further, we quantitatively investigate the above two properties, non-extensivity and long-tails, by explicitly introducing various models of statistical mechanics. We use the data of CfA II South redshift survey and apply the count-in-cell method. We study four statistical mechanics: (1) Boltzmann statistical mechanics, (2) Fractal statistical mechanics, (3) Rényi-entropy-based (REB) statistical mechanics, and (4) Tsallis statistical mechanics, and use Akaike information criteria (AIC) for the fair comparison. We found that both Rényi-entropy-based statistical model and Tsallis statistical model are far better than the other two models. Therefore, the long-tail in the distribution function turns out to be essential.

Suggested Citation

  • Nakamichi, Akika & Morikawa, Masahiro, 2004. "Is galaxy distribution non-extensive and non-Gaussian?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 341(C), pages 215-233.
  • Handle: RePEc:eee:phsmap:v:341:y:2004:i:c:p:215-233
    DOI: 10.1016/j.physa.2004.04.116
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437104006235
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2004.04.116?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chacón-Cardona, C.A. & Casas-Miranda, R.A. & Muñoz-Cuartas, J.C., 2016. "Multi-fractal analysis and lacunarity spectrum of the dark matter haloes in the SDSS-DR7," Chaos, Solitons & Fractals, Elsevier, vol. 82(C), pages 22-33.
    2. Shi, Leilei, 2006. "Does security transaction volume–price behavior resemble a probability wave?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 366(C), pages 419-436.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:341:y:2004:i:c:p:215-233. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.