IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v341y2004icp1-22.html
   My bibliography  Save this article

Polyion monolayers and halos around large weakly-charged colloids

Author

Listed:
  • Chávez-Páez, M
  • González-Mozuelos, P
  • Medina-Noyola, M
  • Méndez-Alcaraz, J.M

Abstract

In this paper we present a theory for the structure of a suspension of highly charged spherical polyions near the surface of a much larger but more weakly charged spherical colloid. Starting from a level of description involving effective screened Coulomb potentials between the particles of both species, we calculate the radial distribution function of the polyions around isolated big colloids. Our theory is based on the use of the Ornstein–Zernike integral equation, complemented with the hyper-netted chain approximate closure, whose numerical solutions are selectively contrasted with the results of Monte Carlo simulations generated for this purpose. Our results indicate that, under certain conditions, our model suspension of polyions is predicted to adsorb onto the surface of the larger colloid, even if both species carry charges of the same sign. Under extreme conditions, the structure of the collection of adsorbed particles corresponds strictly to a monolayer, strongly bound to the surface of the larger particle by electrostatic forces. The complex formed by one large particle plus its adsorbed polyions then bears a large effective charge, which may enhance the electrostatic stability of the former. At some threshold condition, however, this monolayer structure becomes loose enough to be better described as a halo. One might thus associate this threshold condition with the threshold for the stability of the colloidal species formed by the larger particles. We discuss the possible connection of our theoretical results with the recent experimental observations that motivated this work.

Suggested Citation

  • Chávez-Páez, M & González-Mozuelos, P & Medina-Noyola, M & Méndez-Alcaraz, J.M, 2004. "Polyion monolayers and halos around large weakly-charged colloids," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 341(C), pages 1-22.
  • Handle: RePEc:eee:phsmap:v:341:y:2004:i:c:p:1-22
    DOI: 10.1016/j.physa.2004.03.063
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437104003346
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2004.03.063?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:341:y:2004:i:c:p:1-22. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.