IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v340y2004i4p527-534.html
   My bibliography  Save this article

On self-organised criticality in one dimension

Author

Listed:
  • Christensen, Kim

Abstract

In critical phenomena, many of the characteristic features encountered in higher dimensions such as scaling, data collapse and associated critical exponents are also present in one dimension. Likewise for systems displaying self-organised criticality. We show that the one-dimensional Bak–Tang–Wiesenfeld sandpile model, although trivial, does indeed fall into the general framework of self-organised criticality. We also investigate the Oslo ricepile model, driven by adding slope units at the boundary or in the bulk. We determine the critical exponents by measuring the scaling of the kth moment of the avalanche size probability with system size. The avalanche size exponent depends on the type of drive but the avalanche dimension remains constant.

Suggested Citation

  • Christensen, Kim, 2004. "On self-organised criticality in one dimension," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 340(4), pages 527-534.
  • Handle: RePEc:eee:phsmap:v:340:y:2004:i:4:p:527-534
    DOI: 10.1016/j.physa.2004.05.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037843710400559X
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2004.05.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:340:y:2004:i:4:p:527-534. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.