IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v340y2004i1p178-186.html
   My bibliography  Save this article

Largest Lyapunov exponent of long-range XY systems

Author

Listed:
  • Vallejos, Raúl O
  • Anteneodo, Celia

Abstract

We calculate analytically the largest Lyapunov exponent of the so-called αXY Hamiltonian in the high-energy regime. This system consists of a d-dimensional lattice of classical spins with interactions that decay with distance following a power law, the range being adjustable. In disordered regimes the Lyapunov exponent can be easily estimated by means of the “stochastic approach”, a theoretical scheme based on van Kampen's cumulant expansion. The stochastic approach expresses the Lyapunov exponent as a function of a few statistical properties of the Hessian matrix of the interaction that can be calculated as suitable microcanonical averages. We have verified that there is a very good agreement between theory and numerical simulations.

Suggested Citation

  • Vallejos, Raúl O & Anteneodo, Celia, 2004. "Largest Lyapunov exponent of long-range XY systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 340(1), pages 178-186.
  • Handle: RePEc:eee:phsmap:v:340:y:2004:i:1:p:178-186
    DOI: 10.1016/j.physa.2004.04.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437104004133
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2004.04.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:340:y:2004:i:1:p:178-186. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.