IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v340y2004i1p1-10.html
   My bibliography  Save this article

Dynamical scenario for nonextensive statistical mechanics

Author

Listed:
  • Tsallis, Constantino

Abstract

Statistical mechanics can only be ultimately justified in terms of microscopic dynamics (classical, quantum, relativistic, or any other). It is known that Boltzmann–Gibbs statistics is based on the hypothesis of exponential sensitivity to the initial conditions, mixing and ergodicity in Gibbs Γ-space. What are the corresponding hypothesis for nonextensive statistical mechanics? A scenario for answering such question is advanced, which naturally includes the a priori determination of the entropic index q, as well as its cause and manifestations, for say many-body Hamiltonian systems, in (i) sensitivity to the initial conditions in Gibbs Γ-space, (ii) relaxation of macroscopic quantities towards their values in anomalous stationary states that differ from the usual thermal equilibrium (e.g., in some classes of metastable or quasi-stationary states), and (iii) energy distribution in the Γ-space for the same anomalous stationary states.

Suggested Citation

  • Tsallis, Constantino, 2004. "Dynamical scenario for nonextensive statistical mechanics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 340(1), pages 1-10.
  • Handle: RePEc:eee:phsmap:v:340:y:2004:i:1:p:1-10
    DOI: 10.1016/j.physa.2004.03.072
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437104003929
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2004.03.072?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pavlos, G.P. & Iliopoulos, A.C. & Zastenker, G.N. & Zelenyi, L.M. & Karakatsanis, L.P. & Riazantseva, M.O. & Xenakis, M.N. & Pavlos, E.G., 2015. "Tsallis non-extensive statistics and solar wind plasma complexity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 422(C), pages 113-135.
    2. Stosic, Dusan & Stosic, Darko & Stosic, Tatijana, 2019. "Nonextensive triplets in stock market indices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 192-198.
    3. Antoniades, I.P. & Karakatsanis, L.P. & Pavlos, E.G., 2021. "Dynamical characteristics of global stock markets based on time dependent Tsallis non-extensive statistics and generalized Hurst exponents," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 578(C).
    4. Pavlos, G.P. & Malandraki, O.E. & Pavlos, E.G. & Iliopoulos, A.C. & Karakatsanis, L.P., 2016. "Non-extensive statistical analysis of magnetic field during the March 2012 ICME event using a multi-spacecraft approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 464(C), pages 149-181.
    5. Stosic, Darko & Stosic, Dusan & Ludermir, Teresa B. & Stosic, Tatijana, 2018. "Nonextensive triplets in cryptocurrency exchanges," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 1069-1074.
    6. Iliopoulos, A.C. & Aifantis, E.C., 2018. "Tsallis q-triplet, intermittent turbulence and Portevin–Le Chatelier effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 498(C), pages 17-32.
    7. Dusan Stosic & Darko Stosic & Tatijana Stosic, 2019. "Nonextensive triplets in stock market indices," Papers 1901.07721, arXiv.org.
    8. Stosic, Tatijana & Stosic, Borko & Singh, Vijay P., 2018. "q-triplet for Brazos River discharge: The edge of chaos?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 495(C), pages 137-142.
    9. Suyari, Hiroki & Wada, Tatsuaki, 2008. "Multiplicative duality, q-triplet and (μ,ν,q)-relation derived from the one-to-one correspondence between the (μ,ν)-multinomial coefficient and Tsallis entropy Sq," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(1), pages 71-83.
    10. Ioannis P. Antoniades & Leonidas P. Karakatsanis & Evgenios G. Pavlos, 2020. "Dynamical Characteristics of Global Stock Markets Based on Time Dependent Tsallis Non-Extensive Statistics and Generalized Hurst Exponents," Papers 2012.06856, arXiv.org, revised Apr 2021.
    11. Kalimeri, M. & Papadimitriou, C. & Balasis, G. & Eftaxias, K., 2008. "Dynamical complexity detection in pre-seismic emissions using nonadditive Tsallis entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(5), pages 1161-1172.
    12. Rui Pascoal & Ana Margarida Monteiro, 2013. "Market Efficiency, Roughness and Long Memory in the PSI20 Index Returns: Wavelet and Entropy Analysis," GEMF Working Papers 2013-27, GEMF, Faculty of Economics, University of Coimbra.
    13. Karakatsanis, L.P. & Pavlos, G.P. & Iliopoulos, A.C. & Pavlos, E.G. & Clark, P.M. & Duke, J.L. & Monos, D.S., 2018. "Assessing information content and interactive relationships of subgenomic DNA sequences of the MHC using complexity theory approaches based on the non-extensive statistical mechanics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 77-93.
    14. Balasis, Georgios & Daglis, Ioannis A. & Anastasiadis, Anastasios & Papadimitriou, Constantinos & Mandea, Mioara & Eftaxias, Konstantinos, 2011. "Universality in solar flare, magnetic storm and earthquake dynamics using Tsallis statistical mechanics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(2), pages 341-346.
    15. Ferri, Gustavo L. & Figliola, Alejandra & Rosso, Osvaldo A., 2012. "Tsallis’ statistics in the variability of El Niño/Southern Oscillation during the Holocene epoch," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(5), pages 2154-2162.
    16. Pavlos, G.P. & Karakatsanis, L.P. & Iliopoulos, A.C. & Pavlos, E.G. & Xenakis, M.N. & Clark, Peter & Duke, Jamie & Monos, D.S., 2015. "Measuring complexity, nonextensivity and chaos in the DNA sequence of the Major Histocompatibility Complex," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 188-209.
    17. Ferri, G.L. & Reynoso Savio, M.F. & Plastino, A., 2010. "Tsallis’ q-triplet and the ozone layer," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(9), pages 1829-1833.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:340:y:2004:i:1:p:1-10. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.