IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v338y2004i3p605-632.html
   My bibliography  Save this article

Towards landslide predictions: two case studies

Author

Listed:
  • Sornette, D
  • Helmstetter, A
  • Andersen, J.V
  • Gluzman, S
  • Grasso, J.-R
  • Pisarenko, V

Abstract

In a previous work (J. Geophys. Res. (2004)), we have proposed a simple physical model to explain the accelerating displacements preceding some catastrophic landslides, based on a slider-block model with a state- and velocity-dependent friction law. This model predicts two regimes of sliding, stable and unstable leading to a critical finite-time singularity. This model was calibrated quantitatively to the displacement and velocity data preceding two landslides, Vaiont (Italian Alps) and La Clapière (French Alps), showing that the former (resp. later) landslide is in the unstable (resp. stable) sliding regime. Here, we test the predictive skills of the state- and velocity-dependent model on these two landslides with a variety of techniques using (i) a finite-time singularity power law, (ii) the state- and velocity-dependent friction law and (iii) resummation methods extrapolating from early times. For the Vaiont landslide, our model provides good predictions of the critical time of failure up to 20 days before the collapse. Tests are also presented on the predictability of the time of the change of regime for La Clapière landslide.

Suggested Citation

  • Sornette, D & Helmstetter, A & Andersen, J.V & Gluzman, S & Grasso, J.-R & Pisarenko, V, 2004. "Towards landslide predictions: two case studies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 338(3), pages 605-632.
  • Handle: RePEc:eee:phsmap:v:338:y:2004:i:3:p:605-632
    DOI: 10.1016/j.physa.2004.02.065
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437104002596
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2004.02.065?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. D.Sornette & J.V. Andersen & A. Helmstetter & S.Gluzman & J.R.Grasso & V. Pisarenko, 2003. "Slider-Block Friction Model for Landslides: Application to Vaiont and Laclapière Landslides," THEMA Working Papers 2003-33, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiuzhen Li & Jiming Kong & Zhenyu Wang, 2012. "Landslide displacement prediction based on combining method with optimal weight," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 61(2), pages 635-646, March.
    2. Gianluca Martelloni & Franco Bagnoli, 2014. "Infiltration effects on a two-dimensional molecular dynamics model of landslides," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(1), pages 37-62, August.
    3. Yan Du & Lize Ning & Santos D . Chicas & Mowen Xie, 2023. "A new early warning Criterion for assessing landslide risk," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(1), pages 537-549, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:338:y:2004:i:3:p:605-632. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.