IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v337y2004i1p36-66.html
   My bibliography  Save this article

Stability criteria of the Vlasov equation and quasi-stationary states of the HMF model

Author

Listed:
  • Yamaguchi, Yoshiyuki Y.
  • Barré, Julien
  • Bouchet, Freddy
  • Dauxois, Thierry
  • Ruffo, Stefano

Abstract

We perform a detailed study of the relaxation towards equilibrium in the Hamiltonian Mean-Field model, a prototype for long-range interactions in N-particle dynamics. In particular, we point out the role played by the infinity of stationary states of the associated N→∞ Vlasov dynamics. In this context, we derive a new general criterion for the stability of any spatially homogeneous distribution, and compare its analytical predictions with numerical simulations of the Hamiltonian, finite N, dynamics. We then propose, and verify numerically, a scenario for the relaxation process, relying on the Vlasov equation. When starting from a nonstationary or a Vlasov unstable stationary state, the system shows initially a rapid convergence towards a stable stationary state of the Vlasov equation via nonstationary states: we characterize numerically this dynamical instability in the finite N system by introducing appropriate indicators. This first step of the evolution towards Boltzmann–Gibbs equilibrium is followed by a slow quasi-stationary process, that proceeds through different stable stationary states of the Vlasov equation. If the finite N system is initialized in a Vlasov stable homogeneous state, it remains trapped in a quasi-stationary state for times that increase with the nontrivial power law N1.7. Single particle momentum distributions in such a quasi-stationary regime do not have power-law tails, and hence cannot be fitted by the q-exponential distributions derived from Tsallis statistics.

Suggested Citation

  • Yamaguchi, Yoshiyuki Y. & Barré, Julien & Bouchet, Freddy & Dauxois, Thierry & Ruffo, Stefano, 2004. "Stability criteria of the Vlasov equation and quasi-stationary states of the HMF model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 337(1), pages 36-66.
  • Handle: RePEc:eee:phsmap:v:337:y:2004:i:1:p:36-66
    DOI: 10.1016/j.physa.2004.01.041
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437104001256
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2004.01.041?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Atenas, Boris & Curilef, Sergio, 2021. "A statistical description for the Quasi-Stationary-States of the dipole-type Hamiltonian Mean Field Model based on a family of Vlasov solutions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 568(C).
    2. Maciel, J.M. & Firpo, M.-C. & Amato, M.A., 2015. "Some statistical equilibrium mechanics and stability properties of a class of two-dimensional Hamiltonian mean-field models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 424(C), pages 34-43.
    3. Bouchet, Freddy & Gupta, Shamik & Mukamel, David, 2010. "Thermodynamics and dynamics of systems with long-range interactions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(20), pages 4389-4405.
    4. Casetti, Lapo & Kastner, Michael, 2007. "Partial equivalence of statistical ensembles and kinetic energy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 384(2), pages 318-334.
    5. Chrisment, Antoine M. & Firpo, Marie-Christine, 2016. "Entropy–complexity analysis in some globally-coupled systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 460(C), pages 162-173.
    6. Vesperini, Arthur & Franzosi, Roberto & Ruffo, Stefano & Trombettoni, Andrea & Leoncini, Xavier, 2021. "Fast collective oscillations and clustering phenomena in an antiferromagnetic mean-field model," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:337:y:2004:i:1:p:36-66. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.