IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v336y2004i1p14-26.html
   My bibliography  Save this article

Cellular automaton for bacterial towers

Author

Listed:
  • Indekeu, J.O.
  • Giuraniuc, C.V.

Abstract

A simulation approach to the stochastic growth of bacterial towers is presented, in which a non-uniform and finite nutrient supply essentially determines the emerging structure through elementary chemotaxis. The method is based on cellular automata and we use simple, microscopic, local rules for bacterial division in nutrient-rich surroundings. Stochastic nutrient diffusion, while not crucial to the dynamics of the total population, is influential in determining the porosity of the bacterial tower and the roughness of its surface. As the bacteria run out of food, we observe an exponentially rapid saturation to a carrying capacity distribution, similar in many respects to that found in a recently proposed phenomenological hierarchical population model, which uses heuristic parameters and macroscopic rules. Complementary to that phenomenological model, the simulation aims at giving more microscopic insight into the possible mechanisms for one of the recently much studied bacterial morphotypes, known as “towering biofilm”, observed experimentally using confocal laser microscopy. A simulation suggesting a mechanism for biofilm resistance to antibiotics is also shown.

Suggested Citation

  • Indekeu, J.O. & Giuraniuc, C.V., 2004. "Cellular automaton for bacterial towers," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 336(1), pages 14-26.
  • Handle: RePEc:eee:phsmap:v:336:y:2004:i:1:p:14-26
    DOI: 10.1016/j.physa.2004.01.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437104000299
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2004.01.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lee, Sang Dong & Park, Sohyun & Park, Young-Seuk & Chung, Yeong-Jin & Lee, Buom-Young & Chon, Tae-Soo, 2007. "Range expansion of forest pest populations by using the lattice model," Ecological Modelling, Elsevier, vol. 203(1), pages 157-166.
    2. Baetens, J.M. & Van der Weeën, P. & De Baets, B., 2012. "Effect of asynchronous updating on the stability of cellular automata," Chaos, Solitons & Fractals, Elsevier, vol. 45(4), pages 383-394.
    3. Berx, Jonas & Bervoets, Evi & Giuraniuc, Claudiu V. & Indekeu, Joseph O., 2021. "Coastlines and percolation in a model for hierarchical random deposition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 574(C).

    More about this item

    Keywords

    Bacteria; Growth; Biofilm; Fractal;
    All these keywords.

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:336:y:2004:i:1:p:14-26. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.