IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v334y2004i1p46-66.html
   My bibliography  Save this article

Continuous time random walks revisited: first passage time and spatial distributions

Author

Listed:
  • Margolin, Gennady
  • Berkowitz, Brian

Abstract

We investigate continuous time random walk (CTRW) theory, which often assumes an algebraic decay for the single transition time probability density function (pdf) ψ(t)∼t−1−β for large times t. In this form, β is a constant (0<β<2) defining the functional behavior of the transport. The use of algebraically decaying single transition time/distance distributions has been ubiquitous in the development of different transport models, as well as in construction of fractional derivative equations, which are a subset of the more general CTRW. We prove the need for and develop modified solutions for the first passage time distributions (FPTDs) and spatial concentration distributions for 0.5<β<1. Good agreement is found between our CTRW solutions and simulated distributions with an underlying lognormal single transition time pdf (that does not possess a constant β). Moreover, simulated FPTD distributions are observed to approximate closely different Lévy stable distributions with growing β as travel distance increases. The modifications of CTRW distributions also point to the limitations of fractional derivative equation (FDE) approaches appearing in the literature. We propose an alternative form of a FDE, corresponding to our CTRW distributions in the biased 1d case for all 0<β<2,β≠1.

Suggested Citation

  • Margolin, Gennady & Berkowitz, Brian, 2004. "Continuous time random walks revisited: first passage time and spatial distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 334(1), pages 46-66.
  • Handle: RePEc:eee:phsmap:v:334:y:2004:i:1:p:46-66
    DOI: 10.1016/j.physa.2003.10.069
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437103010161
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2003.10.069?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marseguerra, Marzio & Zoia, Andrea, 2008. "Pre-asymptotic corrections to fractional diffusion equations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(12), pages 2668-2674.
    2. Marseguerra, M. & Zoia, A., 2008. "Monte Carlo evaluation of FADE approach to anomalous kinetics," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 77(4), pages 345-357.
    3. Marseguerra, M. & Zoia, A., 2007. "Monte Carlo investigation of anomalous transport in presence of a discontinuity and of an advection field," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 377(2), pages 448-464.
    4. Marseguerra, M. & Zoia, A., 2007. "Some insights in superdiffusive transport," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 377(1), pages 1-14.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:334:y:2004:i:1:p:46-66. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.