IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v331y2004i1p219-232.html
   My bibliography  Save this article

Simulating ‘structure–function’ patterns of malignant brain tumors

Author

Listed:
  • Mansury, Yuri
  • Deisboeck, Thomas S.

Abstract

Rapid growth and extensive tissue infiltration are characteristics of highly malignant neuroepithelial brain tumors. Very little is known, however, about the existence of structure–function relationships in these types of neoplasm. Therefore, using a previously developed two-dimensional agent-based model, we have investigated the emergent patterns of multiple tumor cells that proliferate and migrate on an adaptive grid lattice, driven by a local-search mechanism and guided by the presence of distinct environmental conditions. Numerical results indicate a strong correlation between the fractal dimensions of the tumor surface and the average velocity of the tumor's spatial expansion. In particular, when the so called ‘beaten-path advantage’ intensifies, i.e., rising ‘mechanical rewards’ for cells to follow each other along preformed pathways, it results in an increase of the tumor system's fractal dimensions leading to a concomitant acceleration of its spatial expansion. Whereas cell migration is the dominant phenotype responsible for the more extensive branching patterns exhibiting higher fractal dimensions, cell proliferation appears to become more active primarily at lower fracticality associated with stronger mechanical confinements. Implications of these results for experimental and clinical cancer research are discussed.

Suggested Citation

  • Mansury, Yuri & Deisboeck, Thomas S., 2004. "Simulating ‘structure–function’ patterns of malignant brain tumors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 331(1), pages 219-232.
  • Handle: RePEc:eee:phsmap:v:331:y:2004:i:1:p:219-232
    DOI: 10.1016/j.physa.2003.09.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437103008379
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2003.09.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Naumov, Lev & Hoekstra, Alfons & Sloot, Peter, 2011. "Cellular automata models of tumour natural shrinkage," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(12), pages 2283-2290.
    2. Brutovsky, B. & Horvath, D. & Lisy, V., 2008. "Inverse geometric approach for the simulation of close-to-circular growth. The case of multicellular tumor spheroids," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(4), pages 839-850.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:331:y:2004:i:1:p:219-232. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.