IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v331y2004i1p109-124.html
   My bibliography  Save this article

Derivation of the Onsager principle from large deviation theory

Author

Listed:
  • La Cour, Brian R.
  • Schieve, William C.

Abstract

The Onsager linear relations between macroscopic flows and thermodynamics forces are derived from the point of view of large deviation theory. For a given set of macroscopic variables, we consider the short-time evolution of near-equilibrium fluctuations, represented as the limit of finite-size conditional expectations. The resulting asymptotic conditional expectation is taken to represent the typical macrostate of the system and is used in place of the usual time-averaged macrostate of traditional approaches. By expanding in the short-time, near-equilibrium limit and equating the large deviation rate function with the thermodynamic entropy, a linear relation is obtained between the time rate of change of the macrostate and the conjugate initial macrostate. A Green–Kubo formula for the Onsager matrix is derived and shown to be positive semi-definite, while the Onsager reciprocity relations readily follow from time reversal invariance. Although the initial tendency of a macroscopic variable is to evolve towards equilibrium, we find that this evolution need not be monotonic. The example of an ideal Knundsen gas is considered as an illustration.

Suggested Citation

  • La Cour, Brian R. & Schieve, William C., 2004. "Derivation of the Onsager principle from large deviation theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 331(1), pages 109-124.
  • Handle: RePEc:eee:phsmap:v:331:y:2004:i:1:p:109-124
    DOI: 10.1016/j.physa.2003.09.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437103008021
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2003.09.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:331:y:2004:i:1:p:109-124. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.