IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v329y2003i1p222-230.html
   My bibliography  Save this article

Dynamical model of financial markets: fluctuating ‘temperature’ causes intermittent behavior of price changes

Author

Listed:
  • Kozuki, Naoki
  • Fuchikami, Nobuko

Abstract

We present a model of financial markets originally proposed for a turbulent flow, as a dynamic basis of its intermittent behavior. Time evolution of the price change is assumed to be described by Brownian motion in a power-law potential, where the ‘temperature’ fluctuates slowly. The model generally yields a fat-tailed distribution of the price change. Specifically a Tsallis distribution is obtained if the inverse temperature is χ2-distributed, which qualitatively agrees with intraday data of foreign exchange market. The so-called ‘volatility’, a quantity indicating the risk or activity in financial markets, corresponds to the temperature of markets and its fluctuation leads to intermittency.

Suggested Citation

  • Kozuki, Naoki & Fuchikami, Nobuko, 2003. "Dynamical model of financial markets: fluctuating ‘temperature’ causes intermittent behavior of price changes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 329(1), pages 222-230.
  • Handle: RePEc:eee:phsmap:v:329:y:2003:i:1:p:222-230
    DOI: 10.1016/S0378-4371(03)00592-2
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437103005922
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/S0378-4371(03)00592-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christoph J. Borner & Ingo Hoffmann & John H. Stiebel, 2024. "A closer look at the chemical potential of an ideal agent system," Papers 2401.09233, arXiv.org.
    2. Christoph J. Borner & Ingo Hoffmann & John H. Stiebel, 2023. "On the Connection between Temperature and Volatility in Ideal Agent Systems," Papers 2303.15164, arXiv.org.
    3. Kozaki, M. & Sato, A.-H., 2008. "Application of the Beck model to stock markets: Value-at-Risk and portfolio risk assessment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(5), pages 1225-1246.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:329:y:2003:i:1:p:222-230. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.