IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v326y2003i1p55-68.html
   My bibliography  Save this article

Efficiency of encounter-controlled reaction between diffusing reactants in a finite lattice: topology and boundary effects

Author

Listed:
  • Bentz, Jonathan L.
  • Kozak, John J.
  • Abad, E.
  • Nicolis, G.

Abstract

The role of dimensionality (Euclidean vs. fractal), spatial extent, boundary effects and system topology on the efficiency of diffusion-reaction processes involving two simultaneously diffusing reactants is analyzed. We present numerically exact values for the mean time to reaction, as gauged by the mean walklength before reactive encounter, obtained via application of the theory of finite Markov processes, and via Monte Carlo simulation. As a general rule, we conclude that for sufficiently large systems, the efficiency of diffusion-reaction processes involving two synchronously diffusing reactants (two-walker case) relative to processes in which one reactant of a pair is anchored at some point in the reaction space (one-walker plus trap case) is higher, and is enhanced the lower the dimensionality of the system. This differential efficiency becomes larger with increasing system size and, for periodic systems, its asymptotic value may depend on the parity of the lattice. Imposing confining boundaries on the system enhances the differential efficiency relative to the periodic case, while decreasing the absolute efficiencies of both two-walker and one-walker plus trap processes. Analytic arguments are presented to provide a rationale for the results obtained. The insights afforded by the analysis to the design of heterogeneous catalyst systems is also discussed.

Suggested Citation

  • Bentz, Jonathan L. & Kozak, John J. & Abad, E. & Nicolis, G., 2003. "Efficiency of encounter-controlled reaction between diffusing reactants in a finite lattice: topology and boundary effects," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 326(1), pages 55-68.
  • Handle: RePEc:eee:phsmap:v:326:y:2003:i:1:p:55-68
    DOI: 10.1016/S0378-4371(03)00271-1
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437103002711
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/S0378-4371(03)00271-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:326:y:2003:i:1:p:55-68. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.