IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v325y2003i1p243-259.html
   My bibliography  Save this article

Interacting particles, the stochastic Fisher–Kolmogorov–Petrovsky–Piscounov equation, and duality

Author

Listed:
  • Doering, Charles R.
  • Mueller, Carl
  • Smereka, Peter

Abstract

The stochastic Fisher–Kolmogorov–Petrovsky–Piscunov equation is∂tU(x,t)=D∂xxU+γU(1−U)+εU(1−U)η(x,t)for 0⩽U⩽1 where η(x,t) is a Gaussian white noise process in space and time. Here D, γ and ε are parameters and the equation is interpreted as the continuum limit of a spatially discretized set of Itô equations. Solutions of this stochastic partial differential equation have an exact connection to the A⇌A+A reaction–diffusion system at appropriate values of the rate coefficients and particles’ diffusion constant. This relationship is called “duality” by the probabilists; it is not via some hydrodynamic description of the interacting particle system. In this paper we present a complete derivation of the duality relationship and use it to deduce some properties of solutions to the stochastic Fisher–Kolmogorov–Petrovsky–Piscunov equation.

Suggested Citation

  • Doering, Charles R. & Mueller, Carl & Smereka, Peter, 2003. "Interacting particles, the stochastic Fisher–Kolmogorov–Petrovsky–Piscounov equation, and duality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 325(1), pages 243-259.
  • Handle: RePEc:eee:phsmap:v:325:y:2003:i:1:p:243-259
    DOI: 10.1016/S0378-4371(03)00203-6
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437103002036
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/S0378-4371(03)00203-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lavrentovich, Maxim O. & Nelson, David R., 2015. "Survival probabilities at spherical frontiers," Theoretical Population Biology, Elsevier, vol. 102(C), pages 26-39.
    2. Pigolotti, S. & Benzi, R. & Perlekar, P. & Jensen, M.H. & Toschi, F. & Nelson, D.R., 2013. "Growth, competition and cooperation in spatial population genetics," Theoretical Population Biology, Elsevier, vol. 84(C), pages 72-86.
    3. Bryant, Adam S. & Lavrentovich, Maxim O., 2022. "Survival in branching cellular populations," Theoretical Population Biology, Elsevier, vol. 144(C), pages 13-23.
    4. Feng, Zhaosheng & Li, Yang, 2006. "Complex traveling wave solutions to the Fisher equation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 366(C), pages 115-123.
    5. Hallatschek, Oskar & Nelson, David R., 2008. "Gene surfing in expanding populations," Theoretical Population Biology, Elsevier, vol. 73(1), pages 158-170.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:325:y:2003:i:1:p:243-259. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.