IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v316y2002i1p29-55.html
   My bibliography  Save this article

Stochastic renormalization group in percolation: I. fluctuations and crossover

Author

Listed:
  • Bazant, Martin Z.

Abstract

A generalization of the Renormalization Group, which describes order-parameter fluctuations in finite systems, is developed in the specific context of percolation. This “Stochastic Renormalization Group” (SRG) expresses statistical self-similarity through a non-stationary branching process. The SRG provides a theoretical basis for analytical or numerical approximations, both at and away from criticality, whenever the correlation length is much larger than the lattice spacing (regardless of the system size). For example, the SRG predicts order-parameter distributions and finite-size scaling functions for the complete crossover between phases. For percolation, the simplest SRG describes structural quantities conditional on spanning, such as the total cluster mass or the minimum chemical distance between two boundaries. In these cases, the Central Limit Theorem (for independent random variables) holds at the stable, off-critical fixed points, while a “Fractal Central Limit Theorem” (describing long-range correlations) holds at the unstable, critical fixed point. This first part of a series of articles explains these basic concepts and a general theory of crossover. Subsequent parts will focus on limit theorems and comparisons of small-cell SRG approximations with simulation results.

Suggested Citation

  • Bazant, Martin Z., 2002. "Stochastic renormalization group in percolation: I. fluctuations and crossover," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 316(1), pages 29-55.
  • Handle: RePEc:eee:phsmap:v:316:y:2002:i:1:p:29-55
    DOI: 10.1016/S0378-4371(02)01212-8
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437102012128
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/S0378-4371(02)01212-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. He, Zhenfang & Hu, Hao, 2021. "Size distributions of the largest hole in the largest percolation cluster and backbone," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 570(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:316:y:2002:i:1:p:29-55. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.