IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v314y2002i1p786-795.html
   My bibliography  Save this article

Stock market context of the Lévy walks with varying velocity

Author

Listed:
  • Kutner, Ryszard

Abstract

We developed the most general Lévy walks with varying velocity, shorter called the Weierstrass walks (WW) model, by which one can describe both stationary and non-stationary stochastic time series. We considered a non-Brownian random walk where the walker moves, in general, with a velocity that assumes a different constant value between the successive turning points, i.e., the velocity is a piecewise constant function. This model is a kind of Lévy walks where we assume a hierarchical, self-similar in a stochastic sense, spatio-temporal representation of the main quantities such as waiting-time distribution and sojourn probability density (which are principal quantities in the continuous-time random walk formalism). The WW model makes possible to analyze both the structure of the Hurst exponent and the power-law behavior of kurtosis. This structure results from the hierarchical, spatio-temporal coupling between the walker displacement and the corresponding time of the walks. The analysis uses both the fractional diffusion and the super Burnett coefficients. We constructed the diffusion phase diagram which distinguishes regions occupied by classes of different universality. We study only such classes which are characteristic for stationary situations. We thus have a model ready for describing the data presented, e.g., in the form of moving averages; the operation is often used for stochastic time series, especially financial ones. The model was inspired by properties of financial time series and tested for empirical data extracted from the Warsaw stock exchange since it offers an opportunity to study in an unbiased way several features of stock exchange in its early stage.

Suggested Citation

  • Kutner, Ryszard, 2002. "Stock market context of the Lévy walks with varying velocity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 314(1), pages 786-795.
  • Handle: RePEc:eee:phsmap:v:314:y:2002:i:1:p:786-795
    DOI: 10.1016/S0378-4371(02)01058-0
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437102010580
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/S0378-4371(02)01058-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bouchaud, Jean-Philippe & Marsili, Matteo & Roehner, Bertrand M & Slanina, František, 2001. "Application Of Physics In Economic Modelling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 299(1), pages 1-1.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Slanina, Frantisek, 2013. "Essentials of Econophysics Modelling," OUP Catalogue, Oxford University Press, number 9780199299683.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:314:y:2002:i:1:p:786-795. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.