IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v314y2002i1p613-622.html
   My bibliography  Save this article

Modeling of complex protein structures

Author

Listed:
  • Zipper, Peter
  • Durchschlag, Helmut

Abstract

The solution structure of simple and complex proteins can be modeled efficaciously, starting either from solution scattering data or from the 3D structures derived from crystallographic work or from electron microscopy. Best fitting low-resolution bead models of proteins in solution can be retrieved successfully from the experimental scattering profiles by a genetic algorithm, in addition to rather conventional trials based on parametric data. The atomic coordinates of proteins, stored in several databases, can be exploited to model static, high-resolution images of anhydrous proteins. Additional use of appropriate surface calculation and hydration approaches allows more realistic hydrated protein models to be derived. Three dimensional reconstructions from electron microscopy represent very accurate images of proteins. However, they also require adequate consideration of the hydration contributions implied, for example, by a sophisticated analysis of the voxel density distribution, to simulate biological relevant entities. In all cases, the hydrated protein models yield much more accurate predictions of structural and hydrodynamic data than the anhydrous models.

Suggested Citation

  • Zipper, Peter & Durchschlag, Helmut, 2002. "Modeling of complex protein structures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 314(1), pages 613-622.
  • Handle: RePEc:eee:phsmap:v:314:y:2002:i:1:p:613-622
    DOI: 10.1016/S0378-4371(02)01147-0
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437102011470
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/S0378-4371(02)01147-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:314:y:2002:i:1:p:613-622. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.