IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v313y2002i3p695-708.html
   My bibliography  Save this article

Optimal admission time for shifting the audience

Author

Listed:
  • Itoh, Taira
  • Nagatani, Takashi

Abstract

The lattice gas model of pedestrians is presented to mimic shifting of the audience through a gate. The optimal admission time for shifting the audience is related with the jamming transition of pedestrian flow. When the audience goes away through a gate, a clogging occurs and the flow rate saturates. Until the clogging disappears, it is hard for the visitors to enter the hall even if they try to be admitted into the hall through the gate. The jammed state appears at the gate by colliding of the audience going away with the entering visitors. If one delays successfully the admission time for the visitors to enter the hall, the visitors can be admitted without jams. The dynamical transition between the jammed state and shifting state occurs by varying the delay of admission time.

Suggested Citation

  • Itoh, Taira & Nagatani, Takashi, 2002. "Optimal admission time for shifting the audience," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 313(3), pages 695-708.
  • Handle: RePEc:eee:phsmap:v:313:y:2002:i:3:p:695-708
    DOI: 10.1016/S0378-4371(02)00979-2
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437102009792
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/S0378-4371(02)00979-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Jun & Song, Weiguo & Xu, Xuan, 2008. "Experiment and multi-grid modeling of evacuation from a classroom," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(23), pages 5901-5909.
    2. Song, Weiguo & Xu, Xuan & Wang, Bing-Hong & Ni, Shunjiang, 2006. "Simulation of evacuation processes using a multi-grid model for pedestrian dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 363(2), pages 492-500.
    3. Lei, Wenjun & Li, Angui & Gao, Ran & Zhou, Ning & Mei, Sen & Tian, Zhenguo, 2012. "Experimental study and numerical simulation of evacuation from a dormitory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(21), pages 5189-5196.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:313:y:2002:i:3:p:695-708. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.