IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v307y2002i3p375-404.html
   My bibliography  Save this article

Quantum statistics of superluminal radiation

Author

Listed:
  • Tomaschitz, Roman

Abstract

A statistical quantization of superluminal (tachyon) radiation is introduced. The tiny tachyonic fine structure constant suggests to depart from the usual quantum field theoretic expansions, and to use more elementary methods such as detailed equilibrium balancing of emission and absorption rates. Instead of commencing with an operator interpretation of the wave function, we quantize the time-averaged energy functional and the energy-balance equation. This allows to use different statistics for different types of modes. Transversal superluminal modes are quantized in Bose statistics, longitudinal ones are turned into fermions, resulting in a positive definite Hamiltonian for the radiation field. We discuss the absorptive space structure underlying superluminal quanta and the energy dissipation related to it. This dissipation leads to an adiabatic time variation of the temperature in the bosonic and fermionic spectral functions, gray-body quasi-equilibrium distributions with a dispersion relation adapted to the negative mass-square of the tachyonic modes. The superluminal radiation field couples by minimal substitution to subluminal matter. Adiabatically damped Einstein coefficients are obtained by detailed balancing, as well as emission and absorption rates for tachyon radiation in hydrogenic systems, in particular the possibility of spontaneous emission of superluminal fermionic quanta is pointed out, and time scales for the approach to equilibrium are derived.

Suggested Citation

  • Tomaschitz, Roman, 2002. "Quantum statistics of superluminal radiation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 307(3), pages 375-404.
  • Handle: RePEc:eee:phsmap:v:307:y:2002:i:3:p:375-404
    DOI: 10.1016/S0378-4371(01)00627-6
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437101006276
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/S0378-4371(01)00627-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:307:y:2002:i:3:p:375-404. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.