IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v306y2002icp129-139.html
   My bibliography  Save this article

Self-consistent rate equation theory of cluster size distribution in aggregation phenomena

Author

Listed:
  • Family, Fereydoon
  • Popescu, Mihail N.
  • Amar, Jacques G.

Abstract

Cluster nucleation and growth by aggregation is the central feature of many physical processes, from polymerization and gelation in polymer science, flocculation and coagulation in aerosol and colloidal chemistry, percolation and coarsening in phase transitions and critical phenomena, agglutination and cell adhesion in biology, to island nucleation and thin-film growth in materials science. Detailed information about the kinetics of aggregation is provided by the time dependent cluster size-distribution, a quantity which can be measured experimentally. While the standard Smoluchowski rate-equation approach has been in general successful in predicting average quantities like the total cluster density, it fails to account for spatial fluctuations and correlations and thus predicts size distributions that are in significant disagreement with both experiments and kinetic Monte Carlo simulations. In this work we outline a new method which takes into account such correlations. We show that by coupling a set of evolution equations for the capture-zone distributions with a set of rate-equations for the island densities one may obtain accurate predictions for the time- and size-dependent rates of monomer capture. In particular, by using this method we obtain excellent results for the capture numbers and island-size distributions in irreversible growth on both one- and two-dimensional substrates.

Suggested Citation

  • Family, Fereydoon & Popescu, Mihail N. & Amar, Jacques G., 2002. "Self-consistent rate equation theory of cluster size distribution in aggregation phenomena," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 306(C), pages 129-139.
  • Handle: RePEc:eee:phsmap:v:306:y:2002:i:c:p:129-139
    DOI: 10.1016/S0378-4371(02)00492-2
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437102004922
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/S0378-4371(02)00492-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:306:y:2002:i:c:p:129-139. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.