IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v302y2001i1p89-99.html
   My bibliography  Save this article

Complexity through nonextensivity

Author

Listed:
  • Bialek, William
  • Nemenman, Ilya
  • Tishby, Naftali

Abstract

The problem of defining and studying complexity of a time series has interested people for years. In the context of dynamical systems, Grassberger has suggested that a slow approach of the entropy to its extensive asymptotic limit is a sign of complexity. We investigate this idea further by information theoretic and statistical mechanics techniques and show that these arguments can be made precise, and that they generalize many previous approaches to complexity, in particular, unifying ideas from the physics literature with ideas from learning and coding theory; there are even connections of this statistical approach to algorithmic or Kolmogorov complexity. Moreover, a set of simple axioms similar to those used by Shannon in his development of information theory allows us to prove that the divergent part of the subextensive component of the entropy is a unique complexity measure. We classify time series by their complexities and demonstrate that beyond the “logarithmic” complexity classes widely anticipated in the literature there are qualitatively more complex, “power-law” classes which deserve more attention.

Suggested Citation

  • Bialek, William & Nemenman, Ilya & Tishby, Naftali, 2001. "Complexity through nonextensivity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 302(1), pages 89-99.
  • Handle: RePEc:eee:phsmap:v:302:y:2001:i:1:p:89-99
    DOI: 10.1016/S0378-4371(01)00444-7
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437101004447
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/S0378-4371(01)00444-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ghosh, Abhik, 2023. "Optimal guessing under nonextensive framework and associated moment bounds," Statistics & Probability Letters, Elsevier, vol. 197(C).
    2. Łukasz Dębowski, 2014. "On Hidden Markov Processes with Infinite Excess Entropy," Journal of Theoretical Probability, Springer, vol. 27(2), pages 539-551, June.
    3. Dingle, Kamaludin & Kamal, Rafiq & Hamzi, Boumediene, 2023. "A note on a priori forecasting and simplicity bias in time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    4. Bahamonde, Adolfo D. & Cornejo, Pablo & Sepúlveda, Héctor H., 2023. "Laminar to turbulent transition in terms of information theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 629(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:302:y:2001:i:1:p:89-99. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.