IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v300y2001i3p558-566.html
   My bibliography  Save this article

Dynamical transition and scaling in a mean-field model of pedestrian flow at a bottleneck

Author

Listed:
  • Nagatani, Takashi

Abstract

A mean-field model is presented to mimic the pedestrian channel flow with a bottleneck. The pedestrian flow is described by the mean-field rate equation on the square lattice. The dynamical transition from the free flow to the choking flow is studied by carrying out a numerical simulation for the mean-field rate equation under open boundary conditions. The phase diagram is found numerically and analytically. The scaling behavior is investigated for the transition point and the saturated flow rate in the choking-flow region. It is shown that the transition point does not depend on the strength of drift. The transition point and saturated flow rate agree with those obtained by a one-dimensional approximation.

Suggested Citation

  • Nagatani, Takashi, 2001. "Dynamical transition and scaling in a mean-field model of pedestrian flow at a bottleneck," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 300(3), pages 558-566.
  • Handle: RePEc:eee:phsmap:v:300:y:2001:i:3:p:558-566
    DOI: 10.1016/S0378-4371(01)00366-1
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437101003661
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/S0378-4371(01)00366-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cirillo, E.N.M. & Colangeli, M. & Muntean, A., 2017. "Trapping in bottlenecks: Interplay between microscopic dynamics and large scale effects," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 488(C), pages 30-38.
    2. Haghani, Milad, 2021. "The knowledge domain of crowd dynamics: Anatomy of the field, pioneering studies, temporal trends, influential entities and outside-domain impact," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 580(C).
    3. Jie Xu & Yao Ning & Heng Wei & Wei Xie & Jianyuan Guo & Limin Jia & Yong Qin, 2015. "Route Choice in Subway Station during Morning Peak Hours: A Case of Guangzhou Subway," Discrete Dynamics in Nature and Society, Hindawi, vol. 2015, pages 1-8, March.
    4. Zhang, Jun & Song, Weiguo & Xu, Xuan, 2008. "Experiment and multi-grid modeling of evacuation from a classroom," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(23), pages 5901-5909.
    5. Tang, Tie-Qiao & Yang, Shao-Peng & Ou, Hui & Chen, Liang & Huang, Hai-Jun, 2018. "An aircraft boarding model accounting for group behavior," Journal of Air Transport Management, Elsevier, vol. 69(C), pages 182-189.
    6. Wang, Li & Liu, Mao & Meng, Bo, 2013. "Incorporating topography in a cellular automata model to simulate residents evacuation in a mountain area in China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(3), pages 520-528.
    7. Lei, Wenjun & Li, Angui & Gao, Ran & Zhou, Ning & Mei, Sen & Tian, Zhenguo, 2012. "Experimental study and numerical simulation of evacuation from a dormitory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(21), pages 5189-5196.
    8. Liu, Shaobo & Yang, Lizhong & Fang, Tingyong & Li, Jian, 2009. "Evacuation from a classroom considering the occupant density around exits," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(9), pages 1921-1928.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:300:y:2001:i:3:p:558-566. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.