Author
Listed:
- Sagis, Leonard M.C.
- van der Linden, Erik
Abstract
In this paper we have derived constitutive equations for the stress tensor of a viscoelastic material with anisotropic rigid particles. We have assumed that the material has fading memory. The expressions are valid for slow and small deformations from equilibrium, and for systems that are nearly isotropic in the absence of shear. For viscoelastic materials with fading memory the free energy depends not only on the deformation and degree of orientation in the current configuration, but also on the deformation and orientation history of the system. We have incorporated this dependence by incorporating a dependence on the relative Finger tensor and the alignment difference history in the expression for the free energy. We have used the entropy balance and the expression for the free energy to arrive at a set of fluxes and corresponding driving forces for this type of material. We have used this set of fluxes and driving forces to derive expressions for the stress tensor. We have calculated the explicit form of these expressions for a simple shear deformation in the xy-plane with shear rate γ̇. For fully isotropic materials the expression for the xy-component of the stress reduces to an equation containing only odd powers of γ. The inclusion of a non-zero value for the alignment difference history leads to an additional set of terms in the equation, all proportional to Qdxy (the xy-component of the alignment history tensor), and all proportional to even powers of γ. In a Fourier transform rheometry experiment the even powers of γ introduce small even harmonics in the frequency spectrum of the stress response. The expression for the first normal stress contains only even powers of γ, and the inclusion of the alignment difference history does not lead to additional harmonics in the frequency spectrum. For the second normal stress, inclusion of the alignment history leads to additional terms in the expression proportional to Qdyy and Qdxy. For an isotropic material the spectrum of the second normal stress contains only even harmonics. The terms proportional to Qdxy are all proportional to odd powers of γ, and will generate additional odd harmonics in the frequency spectrum.
Suggested Citation
Sagis, Leonard M.C. & van der Linden, Erik, 2001.
"Viscoelastic materials with anisotropic rigid particles: stress-deformation behavior,"
Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 297(3), pages 303-320.
Handle:
RePEc:eee:phsmap:v:297:y:2001:i:3:p:303-320
DOI: 10.1016/S0378-4371(01)00260-6
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:297:y:2001:i:3:p:303-320. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.