IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v295y2001i3p391-408.html
   My bibliography  Save this article

On survival dynamics of classical systems. Non-chaotic open billiards

Author

Listed:
  • Vicentini, E
  • Kokshenev, V.B

Abstract

We report on decay problem of classical systems. Mesoscopic level consideration is given on the basis of transient dynamics of non-interacting classical particles bounded in billiards. Three distinct decay channels are distinguished through the long-tailed memory effects revealed by temporal behavior of survival probability t−α: (i) the universal (independent of geometry, initial conditions and space dimension) channel with α=1 of Brownian relaxation of non-trapped regular parabolic trajectories and (ii) the non-Brownian channel α<1 associated with subdiffusion relaxation motion of irregular nearly trapped parabolic trajectories. These channels are common of non-fully chaotic systems, including the non-chaotic case. In the fully chaotic billiards the (iii) decay channel is given by α>1 due to “highly chaotic bouncing ball” trajectories. We develop a statistical approach to the problem, earlier proposed for chaotic classical systems (Physica A 275 (2000) 70). A systematic coarse-graining procedure is introduced for non-chaotic systems (exemplified by circle and square geometry), which are characterized by a certain finite characteristic collision time. We demonstrate how the transient dynamics is related to the intrinsic dynamics driven by the preserved Liouville measure. The detailed behavior of the late-time survival probability, including a role of the initial conditions and a system geometry, is studied in detail, both theoretically and numerically.

Suggested Citation

  • Vicentini, E & Kokshenev, V.B, 2001. "On survival dynamics of classical systems. Non-chaotic open billiards," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 295(3), pages 391-408.
  • Handle: RePEc:eee:phsmap:v:295:y:2001:i:3:p:391-408
    DOI: 10.1016/S0378-4371(01)00138-8
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437101001388
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/S0378-4371(01)00138-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kokshenev, Valery B. & Vicentini, Eduardo, 2006. "Physical insight into superdiffusive dynamics of Sinai billiard through collision statistics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 360(2), pages 197-214.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:295:y:2001:i:3:p:391-408. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.