IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v290y2001i1p243-250.html
   My bibliography  Save this article

Random dynamical systems, entropies and information

Author

Listed:
  • Serva, Maurizio

Abstract

Prediction of events is a challenge in many different disciplines, from meteorology to finance: the more difficult this task is, the more complex the system is. Nevertheless, even according to this restricted definition, a general consensus on what should be the correct indicator for complexity is still not reached. In particular, this characterization is still lacking for systems whose time evolution is influenced by factors which are not under control and appear as random parameters or random noise. We show in this paper how to find the correct indicators for complexity in the information theory context. The crucial point is that the answer is twofold depending on the fact whether the random parameters are measurable or not. The content of this apparently trivial observation has been often ignored in literature leading to paradoxical results. Predictability is obviously larger when the random parameters are measurable, nevertheless, on the contrary, predictability improves when the unknown random parameters are time correlated.

Suggested Citation

  • Serva, Maurizio, 2001. "Random dynamical systems, entropies and information," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 290(1), pages 243-250.
  • Handle: RePEc:eee:phsmap:v:290:y:2001:i:1:p:243-250
    DOI: 10.1016/S0378-4371(00)00546-X
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037843710000546X
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/S0378-4371(00)00546-X?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:290:y:2001:i:1:p:243-250. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.