IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v287y2000i3p524-538.html
   My bibliography  Save this article

A trading strategy with variable investment from minimizing risk to profit ratio

Author

Listed:
  • Liehr, Stefan
  • Pawelzik, Klaus

Abstract

Assuming that financial markets behave similar to non-stationary random walk processes we derive an optimal trading strategy with variable investment for minimizing the risk to profit ratio over the trading period. We define a predictability measure which can be attributed to the deterministic and stochastic components of the price dynamics. The influence of predictability variations and especially of structures of short-term inefficiencies on the optimal amount of investment is analyzed in the given context. Finally, we show the performance of our trading strategy on an artificial price dynamics and on the DAX and S&P 500 as examples for real-world data using different types of prediction models in comparison.

Suggested Citation

  • Liehr, Stefan & Pawelzik, Klaus, 2000. "A trading strategy with variable investment from minimizing risk to profit ratio," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 287(3), pages 524-538.
  • Handle: RePEc:eee:phsmap:v:287:y:2000:i:3:p:524-538
    DOI: 10.1016/S0378-4371(00)00390-3
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437100003903
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/S0378-4371(00)00390-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Galluccio, S. & Caldarelli, G. & Marsili, M. & Zhang, Y.-C., 1997. "Scaling in currency exchange," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 245(3), pages 423-436.
    2. Yi-Cheng Zhang, 1999. "Toward a Theory of Marginally Efficient Markets," Papers cond-mat/9901243, arXiv.org.
    3. Zhang, Yi-Cheng, 1999. "Toward a theory of marginally efficient markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 269(1), pages 30-44.
    4. Benoit Mandelbrot, 2015. "The Variation of Certain Speculative Prices," World Scientific Book Chapters, in: Anastasios G Malliaris & William T Ziemba (ed.), THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 3, pages 39-78, World Scientific Publishing Co. Pte. Ltd..
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hui, Eddie C.M. & Chan, Ka Kwan Kevin, 2019. "Alternative trading strategies to beat “buy-and-hold”," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. E. Samanidou & E. Zschischang & D. Stauffer & T. Lux, 2001. "Microscopic Models of Financial Markets," Papers cond-mat/0110354, arXiv.org.
    2. Zunino, Luciano & Zanin, Massimiliano & Tabak, Benjamin M. & Pérez, Darío G. & Rosso, Osvaldo A., 2010. "Complexity-entropy causality plane: A useful approach to quantify the stock market inefficiency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(9), pages 1891-1901.
    3. E. Samanidou & E. Zschischang & D. Stauffer & T. Lux, 2007. "Agent-based Models of Financial Markets," Papers physics/0701140, arXiv.org.
    4. Gu, Gao-Feng & Xiong, Xiong & Zhang, Yong-Jie & Chen, Wei & Zhang, Wei & Zhou, Wei-Xing, 2016. "Stylized facts of price gaps in limit order books," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 48-58.
    5. Didier SORNETTE, 2014. "Physics and Financial Economics (1776-2014): Puzzles, Ising and Agent-Based Models," Swiss Finance Institute Research Paper Series 14-25, Swiss Finance Institute.
    6. Iori, Giulia, 2002. "A microsimulation of traders activity in the stock market: the role of heterogeneity, agents' interactions and trade frictions," Journal of Economic Behavior & Organization, Elsevier, vol. 49(2), pages 269-285, October.
    7. Shi, Leilei, 2006. "Does security transaction volume–price behavior resemble a probability wave?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 366(C), pages 419-436.
    8. Farmer, J. Doyne & Joshi, Shareen, 2002. "The price dynamics of common trading strategies," Journal of Economic Behavior & Organization, Elsevier, vol. 49(2), pages 149-171, October.
    9. Thomas Lux, 2009. "Applications of Statistical Physics in Finance and Economics," Chapters, in: J. Barkley Rosser Jr. (ed.), Handbook of Research on Complexity, chapter 9, Edward Elgar Publishing.
    10. Fernandes, Leonardo H.S. & de Araujo, Fernando H.A. & Tabak, Benjamin M., 2021. "Insights from the (in)efficiency of Chinese sectoral indices during COVID-19," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 578(C).
    11. Kostanjcar, Zvonko & Jeren, Branko & Juretic, Zeljan, 2012. "Impact of uncertainty in expected return estimation on stock price volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(22), pages 5563-5571.
    12. J. B. Glattfelder & A. Dupuis & R. B. Olsen, 2010. "Patterns in high-frequency FX data: discovery of 12 empirical scaling laws," Quantitative Finance, Taylor & Francis Journals, vol. 11(4), pages 599-614.
    13. Van Vliet, Ben, 2017. "Capability satisficing in high frequency trading," Research in International Business and Finance, Elsevier, vol. 42(C), pages 509-521.
    14. Turiel, Antonio & Pérez-Vicente, Conrad J., 2003. "Multifractal geometry in stock market time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 322(C), pages 629-649.
    15. Sazuka, Naoya & Ohira, Toru & Marumo, Kouhei & Shimizu, Tokiko & Takayasu, Misako & Takayasu, Hideki, 2003. "A dynamical structure of high frequency currency exchange market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 324(1), pages 366-371.
    16. Zunino, Luciano & Zanin, Massimiliano & Tabak, Benjamin M. & Pérez, Darío G. & Rosso, Osvaldo A., 2009. "Forbidden patterns, permutation entropy and stock market inefficiency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(14), pages 2854-2864.
    17. Weron, Rafal & Weron, Karina & Weron, Aleksander, 1999. "A conditionally exponential decay approach to scaling in finance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 264(3), pages 551-561.
    18. Caldarelli, Guido & Capocci, Andrea & Laureti, Paolo, 2001. "Sex-oriented stable matchings of the marriage problem with correlated and incomplete information," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 299(1), pages 268-272.
    19. Stosic, Darko & Stosic, Dusan & Ludermir, Teresa B. & Stosic, Tatijana, 2019. "Exploring disorder and complexity in the cryptocurrency space," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 548-556.
    20. Troy Tassier, 2013. "Handbook of Research on Complexity, by J. Barkley Rosser, Jr. and Edward Elgar," Eastern Economic Journal, Palgrave Macmillan;Eastern Economic Association, vol. 39(1), pages 132-133.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:287:y:2000:i:3:p:524-538. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.