IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v280y2000i3p405-436.html
   My bibliography  Save this article

Symmetry groups, density-matrix equations and covariant Wigner functions

Author

Listed:
  • Santana, A.E.
  • Neto, A.Matos
  • Vianna, J.D.M.
  • Khanna, F.C.

Abstract

A representation theory for Lie groups is developed taking the Hilbert space, say Hw, of the w∗-algebra standard representation as the representation space. In this context the states describing physical systems are amplitude wave functions but closely connected with the notion of the density matrix. Then, based on symmetry properties, a general physical interpretation for the dual variables of thermal theories, in particular the thermofield dynamics (TFD) formalism, is introduced. The kinematic symmetries, Galilei and Poincaré, are studied and (density) amplitude matrix equations are derived for both of these cases. In the same context of group theory, the notion of phase space in quantum theory is analysed. Thus, in the non-relativistic situation, the concept of density amplitude is introduced, and as an example, a spin-half system is algebraically studied; Wigner function representations for the amplitude density matrices are derived and the connection of TFD and the usual Wigner-function methods are analysed. For the Poincaré symmetries the relativistic density matrix equations are studied for the scalar and spinorial fields. The relativistic phase space is built following the lines of the non-relativistic case. So, for the scalar field, the kinetic theory is introduced via the Klein–Gordon density-matrix equation, and a derivation of the Jüttiner distribution is presented as an example, thus making it possible to compare with the standard approaches. The analysis of the phase space for the Dirac field is carried out in connection with the dual spinor structure induced by the Dirac-field density-matrix equation, with the physical content relying on the symmetry groups. Gauge invariance is considered and, as a basic result, it is shown that the Heinz density operator (which has been used to develope a gauge covariant kinetic theory) is a particular solution for the (Klein–Gordon and Dirac) density-matrix equation.

Suggested Citation

  • Santana, A.E. & Neto, A.Matos & Vianna, J.D.M. & Khanna, F.C., 2000. "Symmetry groups, density-matrix equations and covariant Wigner functions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 280(3), pages 405-436.
  • Handle: RePEc:eee:phsmap:v:280:y:2000:i:3:p:405-436
    DOI: 10.1016/S0378-4371(99)00606-8
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437199006068
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/S0378-4371(99)00606-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:280:y:2000:i:3:p:405-436. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.