IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v280y2000i3p304-314.html
   My bibliography  Save this article

Anomalous diffusion and charge relaxation on comb model: exact solutions

Author

Listed:
  • Arkhincheev, V.E

Abstract

The random walks on the comb structure are considered. It is shown that due to fingers a diffusion has an anomalous character, that is an r.m.s. displacement depends on time by a power way with exponent 12. The generalized diffusion equation for an anomalous case is deduced. It essentially differs from a usual diffusion equation in the continuity equation form: instead of the first time derivative, the time derivative of fractal order 12 appears. In the second part the charge relaxation on the comb structure is studied. A non-Maxwell character is established. The reason is that the electric field has three components, but a charge may relax only along some conducting lines.

Suggested Citation

  • Arkhincheev, V.E, 2000. "Anomalous diffusion and charge relaxation on comb model: exact solutions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 280(3), pages 304-314.
  • Handle: RePEc:eee:phsmap:v:280:y:2000:i:3:p:304-314
    DOI: 10.1016/S0378-4371(99)00593-2
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437199005932
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/S0378-4371(99)00593-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Endre Csáki & Antónia Földes, 2020. "Random Walks on Comb-Type Subsets of $$\mathbb {Z}^2$$ Z 2," Journal of Theoretical Probability, Springer, vol. 33(4), pages 2233-2257, December.
    2. Trifce Sandev & Viktor Domazetoski & Alexander Iomin & Ljupco Kocarev, 2021. "Diffusion–Advection Equations on a Comb: Resetting and Random Search," Mathematics, MDPI, vol. 9(3), pages 1-24, January.
    3. Csáki, Endre & Csörgo, Miklós & Földes, Antónia & Révész, Pál, 2011. "On the local time of random walk on the 2-dimensional comb," Stochastic Processes and their Applications, Elsevier, vol. 121(6), pages 1290-1314, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:280:y:2000:i:3:p:304-314. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.