IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v279y2000i1p386-397.html
   My bibliography  Save this article

On kink states of ferromagnetic chains

Author

Listed:
  • Bach, Ky-Thuan
  • Macris, Nicolas

Abstract

We study kink states of quantum, ferromagnetic, easy axis spin 12 chains at zero temperature. These are produced by applying opposite magnetic fields on the two end sites of the chain. For sufficiently strong anisotropy and boundary field, we obtain estimates on the wave function of the lowest energy states in sectors with fixed third component of the total spin. These estimates imply that the magnetization profile has a kink structure with a well-defined location and a finite width. The energies of kink states in different sectors are exponentially close as long as they are not located near the boundaries. The basic tool that we use here is the principle of exponential localization of eigenvectors. We illustrate the method in the simplest case of the Heisenberg XXZ model and then show how it can be generalized to more complicated models. In the particular case of the Heisenberg XXZ model our results are consistent with the exact kink wave functions known for a special value of the boundary magnetic field.

Suggested Citation

  • Bach, Ky-Thuan & Macris, Nicolas, 2000. "On kink states of ferromagnetic chains," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 279(1), pages 386-397.
  • Handle: RePEc:eee:phsmap:v:279:y:2000:i:1:p:386-397
    DOI: 10.1016/S0378-4371(99)00532-4
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437199005324
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/S0378-4371(99)00532-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:279:y:2000:i:1:p:386-397. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.