IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v276y2000i3p521-534.html
   My bibliography  Save this article

Statistical mechanics approach to the phase unwrapping problem

Author

Listed:
  • Stramaglia, Sebastiano
  • Refice, Alberto
  • Guerriero, Luciano

Abstract

The use of mean-field theory to unwrap principal phase patterns has been recently proposed. In this paper we generalize the mean-field approach to process phase patterns with arbitrary degree of undersampling. The phase unwrapping problem is formulated as that of finding the ground state of a locally constrained, finite size, spin-L Ising model under a non-uniform magnetic field. The optimization problem is solved by the mean-field annealing technique. Synthetic experiments show the effectiveness of the proposed algorithm.

Suggested Citation

  • Stramaglia, Sebastiano & Refice, Alberto & Guerriero, Luciano, 2000. "Statistical mechanics approach to the phase unwrapping problem," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 276(3), pages 521-534.
  • Handle: RePEc:eee:phsmap:v:276:y:2000:i:3:p:521-534
    DOI: 10.1016/S0378-4371(99)00462-8
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437199004628
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/S0378-4371(99)00462-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kiwata, Hirohito, 2012. "Physical consideration of an image in image restoration using Bayes’ formula," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(6), pages 2215-2224.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:276:y:2000:i:3:p:521-534. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.