IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v270y1999i3p552-566.html
   My bibliography  Save this article

Fractal fluctuations in cardiac time series

Author

Listed:
  • West, B.J.
  • Zhang, R.
  • Sanders, A.W.
  • Miniyar, S.
  • Zuckerman, J.H.
  • Levine, B.D.

Abstract

Human heart rate, controlled by complex feedback mechanisms, is a vital index of systematic circulation. However, it has been shown that beat-to-beat values of heart rate fluctuate continually over a wide range of time scales. Herein we use the relative dispersion, the ratio of the standard deviation to the mean, to show, by systematically aggregating the data, that the correlation in the beat-to-beat cardiac time series is a modulated inverse power law. This scaling property indicates the existence of long-time memory in the underlying cardiac control process and supports the conclusion that heart rate variability is a temporal fractal. We argue that the cardiac control system has allometric properties that enable it to respond to a dynamical environment through scaling.

Suggested Citation

  • West, B.J. & Zhang, R. & Sanders, A.W. & Miniyar, S. & Zuckerman, J.H. & Levine, B.D., 1999. "Fractal fluctuations in cardiac time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 270(3), pages 552-566.
  • Handle: RePEc:eee:phsmap:v:270:y:1999:i:3:p:552-566
    DOI: 10.1016/S0378-4371(99)00175-2
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437199001752
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/S0378-4371(99)00175-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Miao Yu & Dong Liu & Jean Dieu Bazimenyera, 2013. "Diagnostic Complexity of Regional Groundwater Resources System Based on time series fractal dimension and Artificial Fish Swarm Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(7), pages 1897-1911, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:270:y:1999:i:3:p:552-566. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.