IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v263y1999i1p158-169.html
   My bibliography  Save this article

Superparamagnetic clustering of data — The definitive solution of an ill-posed problem

Author

Listed:
  • Domany, Eytan

Abstract

Clustering is an important technique in exploratory data analysis, with applications in image processing object classification, target recognition, data mining etc. The aims to partition data according to natural classes present in it, assigning data points that are “more similar” to the same “cluster”. We solved this ill-posed problem without making any assumptions about the structure of the data, by using a physical system at an analog computer. The physical system we use is a disordered (granular) magnet. The method was tested successfully on a variety of artificial and real-life problems, such as classification of flowers, processing of satellite images, speech recognition and identification of textures and images. We are currently involved in several collaborations, applying the method to image classification, fMRI data analysis and classification of protein structures.

Suggested Citation

  • Domany, Eytan, 1999. "Superparamagnetic clustering of data — The definitive solution of an ill-posed problem," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 263(1), pages 158-169.
  • Handle: RePEc:eee:phsmap:v:263:y:1999:i:1:p:158-169
    DOI: 10.1016/S0378-4371(98)00494-4
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437198004944
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/S0378-4371(98)00494-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. de Arruda, Guilherme F. & Costa, Luciano da Fontoura & Rodrigues, Francisco A., 2012. "A complex networks approach for data clustering," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(23), pages 6174-6183.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:263:y:1999:i:1:p:158-169. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.