IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v259y1998i1p119-137.html
   My bibliography  Save this article

Ergodicity properties of energy conserving single spin flip dynamics in the XY model

Author

Listed:
  • Dhar, Abishek

Abstract

A single spin flip stochastic energy conserving dynamics for the XY model is considered. We study the ergodicity properties of the dynamics. It is shown that phase space trajectories densely fill the geometrically connected parts of the energy surface. We also show that while the dynamics is discrete and the phase point jumps around, it cannot make transitions between closed disconnected parts of the energy surface. Thus the number of distinct sectors depends on the number of geometrically disconnected parts of the energy surface. Information on the connectivity of the surfaces is obtained by studying the critical points of the energy function. We study in detail the case of two spins and find that the number of sectors can be either one or two, depending on the external fields and the energy. For a periodic lattice in d dimensions, we find regions in phase space where the dynamics is non-ergodic and obtain a lower bound on the number of disconnected sectors. We provide some numerical evidence which suggests that such regions might be of small measure so that the dynamics is effectively ergodic.

Suggested Citation

  • Dhar, Abishek, 1998. "Ergodicity properties of energy conserving single spin flip dynamics in the XY model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 259(1), pages 119-137.
  • Handle: RePEc:eee:phsmap:v:259:y:1998:i:1:p:119-137
    DOI: 10.1016/S0378-4371(98)00248-9
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437198002489
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/S0378-4371(98)00248-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Keywords

    Ergodicity; Microcanonical;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:259:y:1998:i:1:p:119-137. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.