IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v232y1996i1p61-73.html
   My bibliography  Save this article

Averaging and finite-size analysis for disorder: The Hopfield model

Author

Listed:
  • Stiefvater, Thomas
  • Müller, Klaus-Robert
  • Kühn, Reimer

Abstract

A finite-size scaling study of the capacity problem for the Hopfield model is presented. Questions of identifying the correct shape of the scaling function, of corrections to finite-size scaling and, in particular, the problem of properly dealing with disorder are carefully addressed. At first-order phase transitions, like the one considered here, relevant physical quantities typically scale exponentially with system size, and it is argued that in disordered systems reliable information about the phase transition can therefore be obtained only by averaging their logarithm rather than by considering the logarithm of their average — an issue reminiscent of the difference between quenched and annealed disorder, but previously ignored in the problem at hand. Our data for the Hopfield model yield αc = 0.141 ± 0.0015. They are thus closer to the results of a recent one- and two-step replica symmetry breaking (RSB) analysis, and disagree with that of an earlier one-step RSB study, with those of previous simulations, and with that of a recent paper using an infinite-step RSB scheme.

Suggested Citation

  • Stiefvater, Thomas & Müller, Klaus-Robert & Kühn, Reimer, 1996. "Averaging and finite-size analysis for disorder: The Hopfield model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 232(1), pages 61-73.
  • Handle: RePEc:eee:phsmap:v:232:y:1996:i:1:p:61-73
    DOI: 10.1016/0378-4371(96)00134-3
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0378437196001343
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/0378-4371(96)00134-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:232:y:1996:i:1:p:61-73. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.