IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v232y1996i1p162-170.html
   My bibliography  Save this article

Damage spreading in non-frustrated phase of a triangular antiferromagnet

Author

Listed:
  • Antoniuk, M.
  • Kułakowski, K.

Abstract

We investigate a first-order phase transition from a non-magnetic phase to a non-frustrated phase of a two-dimensional triangular lattice with antiferromagnetic bonds. A cellular automaton is defined, which chooses a magnetic state of subsequent lattice sites, where an interphase boundary arrives, as to minimise the local energy. The ground state magnetic state is found to be unstable with respect to the point defects of magnetic structure.

Suggested Citation

  • Antoniuk, M. & Kułakowski, K., 1996. "Damage spreading in non-frustrated phase of a triangular antiferromagnet," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 232(1), pages 162-170.
  • Handle: RePEc:eee:phsmap:v:232:y:1996:i:1:p:162-170
    DOI: 10.1016/0378-4371(96)00135-5
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0378437196001355
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/0378-4371(96)00135-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Giancarlo Gandolfo & Pier Carlo Padoan & Giuseppe De Arcangelis & Clifford R. Wymer, 1994. "The Italian Continuous Time Model: Results of the Nonlinear Estimation," CESifo Working Paper Series 69, CESifo.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gropengiesser, Uwe, 1995. "Damage spreading and critical exponents for ‘model A’ Ising dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 215(3), pages 308-310.
    2. Wang, Fugao & Suzuki, Masuo, 1995. "Finite-size scaling properties of the damage distance and dynamical critical exponent for the Ising model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 220(3), pages 534-541.
    3. Grassberger, Peter & Stauffer, Dietrich, 1996. "Stretched and non-stretched exponential relaxation in Ising ferromagnets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 232(1), pages 171-179.
    4. Makowiec, Danuta, 1996. "Chaos in cellular automaton systems with Toom rule," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 234(1), pages 435-442.
    5. Wang, Fugao & Suzuki, Masuo, 1996. "Time-evolution of damage in the Ising model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 223(1), pages 34-49.
    6. Grassberger, Peter, 1995. "Damage spreading and critical exponents for “model A” Ising dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 214(4), pages 547-559.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:232:y:1996:i:1:p:162-170. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.