IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v230y1996i3p658-702.html
   My bibliography  Save this article

Hierarchy of equations for reduced density matrices in the case of thermodynamic equilibrium

Author

Listed:
  • Golovko, V.A.

Abstract

A hierarchy of equations for s-particle density matrices at thermodynamic equilibrium is obtained, with the equation for the nonequilibrium density matrix as the starting point. When deducing the hierarchy the hypothesis of maximum statistical independence for the density matrices is used. The hierarchy obtained is an analogue of the classical equilibrium BBGKY hierarchy and goes over into it when h̷ → 0. It is shown that thermodynamic quantities can be expressed in terms of functions that enter only into the first hierarchy equations. The hierarchy is analysed in detail in the case of a uniform fluid. As an example in which the equations can be solved easily enough, a hard-sphere system wherein triplet correlations are neglected is considered. Different approximations that can be used when solving the equations derived are discussed. Comparisons are made with the results of other theoretical treatments.

Suggested Citation

  • Golovko, V.A., 1996. "Hierarchy of equations for reduced density matrices in the case of thermodynamic equilibrium," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 230(3), pages 658-702.
  • Handle: RePEc:eee:phsmap:v:230:y:1996:i:3:p:658-702
    DOI: 10.1016/0378-4371(96)00065-9
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0378437196000659
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/0378-4371(96)00065-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:230:y:1996:i:3:p:658-702. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.